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Notation

G: = a graph, with vertex set V = V (G) = {v1, v2, · · · , vn}, and edge set
E = E(G) = {e1, e2, · · · , em}.

A: = an abelian (additive) group with identity 0, and with |A| ≥ 3 and
A∗ = A− {0}.

F (G,A) = {f : E 7→ A}, and F ∗(G,A) = {f : E 7→ A∗}.

Fix D, an orientation of G, where (u, v) ∈ E(D) iff the arc is oriented from u to v.

For each f : E 7→ A, define ∂f : V (G) 7→ A by

∂f(v) =
∑

(v,u)∈E(D) f(v, u)−
∑

(u,v)∈E(D) f(u, v)).

∂f(v) is the net-out f -flow from v.
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Group flows and integer flows

A function f ∈ F ∗(G,A) is a nowhere-zero A-flow (or just an A-NZF) if ∂f = 0

(the all zero vector).

Z: = the abelian group of integers.

Zk: = the abelian group of mod k integers.

A function f ∈ F ∗(G,Z) is a nowhere-zero k-flow (or just a k-NZF) if Df = 0, and
if ∀e ∈ E(G), 0 < |f(e)| < k.

Theorem (Tutte) If G has a k-NZF, then G has a (k + 1)-NZF.

Theorem (Tutte) A graph G has an A-NZF if and only if G has an |A|-NZF.
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The Nowhere Zero Flow Conjectures

Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation
of G also has the same property, and so having an A-NZF or a k-NZF is
independent of the choice of the orientation.
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The Nowhere Zero Flow Conjectures

Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation
of G also has the same property, and so having an A-NZF or a k-NZF is
independent of the choice of the orientation.

Fact: If for an abelian group A, a connected graph G has an A-NZF, then G must
be 2-edge-connected. (That is, G does not have a cut edge).

Tutte’s 5-flow Conjecture If κ′(G) ≥ 2, then G has a 5-NZF.

Tutte’s 4-flow Conjecture If κ′(G) ≥ 2 and if G does not have a subgraph
contracted to the Petersen graph, then G has a 4-NZF.

Tutte’s 3-flow Conjecture If κ′(G) ≥ 4, then G has a 3-NZF.
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Nowhere zero flows and colorings

Theorem (Tutte) For a plane graph G, G has a face

k-coloring if and only if G has a k-NZF.
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Nowhere zero flows and colorings

Theorem (Tutte) For a plane graph G, G has a face

k-coloring if and only if G has a k-NZF.

These conjectures are theorems when restricted to planar

graphs (need 4 Color Theorem for the 4-flow conjecture).
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The group connectivity problem

The nowhere zero A-flow problem seeks to find a nowhere
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The nowhere zero A-flow problem seeks to find a nowhere
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linear equations ∂f = 0.

The corresponding nonhomogeneous problem is, for a given

vector b : V (G) 7→ A, determine if there is a nowhere zero

solution f to the system ∂f = b.
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The group connectivity problem

A necessary condition: If ∂f = b has a nowhere zero

solution f , then
∑

v∈V (G) b(v) = 0 in A.
∑

v∈V (G) b(v) =

∑

v∈V (G)





∑

(v,u)∈E(D)

f(v, u)−
∑

(u,v)∈E(D)

f(u, v))





= 0,

as for every arc (u, v), both f(u, v) and −f(u, v) occur in the

summation exactly once.
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The group connectivity problem

A graph G is A-connected if for any b : V (G) 7→ A satisfying
∑

v∈V (G) b(v) = 0, ∃f ∈ F ∗(G,A) such that ∂f = b.
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The group connectivity problem

Tutte observed relationship between Z3-NZF and modulo 3

orientation.

Suppose that, under an orientation, G has a Z3-NZF

f : E(G) 7→ {1,−1} in Z3.

For each (u, v) with f(u, v) = −1, change the orientation to

(v, u) and redefine f(v, u) = 1.

The resulting orientation D of G satisfying that, for each v,

d+D(v)− d−D(v) = ∂f(v) ≡ 0 (mod 3).

This orientation D is called a mod 3-orientation of G.
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Modulo Orientations

Zk = (additive) cyclic group of k.

Modulo Orientation Problem. Given an integer k > 1 and a

graph G, is there an orientation D = D(G) such that for

every vertex v ∈ V (G), d+D(v)− d−D(v) ≡ 0 (mod k)?

If such an orientation exists, then G admits a mod

k-orientation.

Mk:= family of all graphs admitting a mod k-orientation.
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Fact: If k is even, then a connected G is in Mk iff G is

Eulerian.

– p. 11/32



The Problem

Fact: If k is even, then a connected G is in Mk iff G is

Eulerian.

Theorem (Tutte) If G is a 3-regular graph, then G ∈ M3 iff G

is bipartite.

– p. 11/32



The Problem

Fact: If k is even, then a connected G is in Mk iff G is

Eulerian.

Theorem (Tutte) If G is a 3-regular graph, then G ∈ M3 iff G

is bipartite.

Proposition (DAM 2014) For ny integer s ≥ 1, if G is a

(2s+ 1)-regular graph, then G ∈ M2s+1 iff G is bipartite.
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The Problem

Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.

Conjecture (Jaeger 1984) For any integer s ≥ 1, every 4s-edge-connected graph
has a mod (2s+ 1)-orientation.

Theorem (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM 2014) A connected
graph admits a mod (2s+ 1)-orientation if and only if it is a contraction of a
(2s+ 1)-regular bipartite graph.

Problem For any integer s ≥ 1, there exists a smallest integer h(s) such that every
h(s)-edge-connected graph is a contraction of a (2s+ 1)-regular bipartite graph.

Problem For any integer s ≥ 1, there exists a smallest integer g(s) such that every
g(s)-edge-disjoint spanning trees is a contraction of a (2s+ 1)-regular bipartite
graph.
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The Problem

If for any function b : V (G) → Z2s+1 satisfying
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v∈V (G) b(v) ≡ 0 (mod 2s+ 1), G always has an orientation

D such that for every vertex v ∈ V (G), d+D(v)− d−D(v) ≡ b(v)

mod 2s+ 1, then G is strongly Z2s+1-connected.
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The Problem

If for any function b : V (G) → Z2s+1 satisfying
∑

v∈V (G) b(v) ≡ 0 (mod 2s+ 1), G always has an orientation

D such that for every vertex v ∈ V (G), d+D(v)− d−D(v) ≡ b(v)

mod 2s+ 1, then G is strongly Z2s+1-connected.

If G is strongly Z2s+1-connected, then G is in M2s+1.

Example (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM

2014) A complete graph Kn is strongly Z2s+1-connected iff

n ≥ 4s+ 1.
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Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly
Z3-connected.
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The Problem

Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly
Z3-connected.

Problem For any integer s ≥ 1, determine the smallest integer f(s) such that
every f(s)-edge-connected graph is strongly Z2s+1-connected.

Problem (SIDAM 2007) Is f(s) = 4s+ 1? (This is now known to be incorrect.)

Theorem (M. Ham, X. Hou, J. Li and HJL, SIDAM 2018) The following are
equivalent for an integra function k(s).

(i) every k(s)-edge-connected graph is strongly Z2s+1-connected.

(ii) every k(s)-edge-connected bipartite graph is strongly Z2s+1-connected.
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Recent progresses and problems

Edge-density condition: Edge-connectivity and edge-disjoint

spanning trees
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The Ramsey type problem

Degree conditions/Extremal problems
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Recent Progresses: edge-density condition

Let s > 0 be an integer.
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Recent Progresses: edge-density condition

Let s > 0 be an integer.

Theorem (Thomassen, JCTB 2012) If κ′(G) ≥ 8, then G is

strongly Z3-connected.

Theorem (Thomassen, JCTB 2012) If

κ′(G) ≥ 8s2 + 10s+ 3, then G is strongly Z2s+1-connected.

Theorem (Lovasz, Thomassen, Wu, Zhang, JCTB 2013,

and Wu 2012 Dissertation) If κ′(G) ≥ 8s, then G is strongly

Z2s+1-connected.
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Recent Progresses: edge-density condition

Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following
holds.
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Recent Progresses: edge-density condition
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Recent Progresses: edge-density condition

Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following
holds.

(i) For every integer p ≥ 3, there exists a 4p-edge-connected graph admitting no
modulo (2p+ 1)-orientation.

(ii) For every integer p ≥ 5, there exists a (4p+ 1)-edge-connected graph
admitting no modulo (2p+ 1)-orientation.

This disproves the following:

(i) Jaeger’s conjecture: Every 4p-edge-connected graph admitting no modulo
(2p+ 1)-orientation.

(ii) Conjecture: (SIDAM 2007) Every (4p+ 1)-edge-connected graph is strong
Z2p+1-connected.
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Recent Progresses: edge-density condition

Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with

4-edge-disjoint spanning trees is strongly Z3-connected.
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Theorem (J. Li, R. Luo, HJL, SIDAM 2017) Every

Z2s+1-connected graph has 2s-edge-disjoint spanning trees.
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Recent Progresses: edge-density condition

Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with

4-edge-disjoint spanning trees is strongly Z3-connected.

Theorem (J. Li, R. Luo, HJL, SIDAM 2017) Every

Z2s+1-connected graph has 2s-edge-disjoint spanning trees.

Problem For any integer s ≥ 1, there exists a smallest

integer φ(s) such that every φ(s)-edge-disjoint spanning

trees is strongly Z2s+1-connected.

Problem Can φ(3) = 3? Can φ(s) = 2s+ 1?
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G: = simple graph with n = |V (G)|.
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Recent Progresses: Ramsey type problem

G: = simple graph with n = |V (G)|.

Gc: = Kn − E(G), the complement of G

Classical Ramsey Theorem For any positive integers k, ℓ, there exists a (smallest)
integer R(k, ℓ) such that every simple graph G on n ≥ R(k, ℓ) vertices, one of the
following holds:

(i) G contains Kk as a subgraph.

(ii) Gc contains Kℓ as a subgraph.

The problem is to show the existence of R(k, ℓ) and determine the value of R(k, ℓ).
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Recent Progresses: Ramsey type problem

P : = a graphical property.

Generalized Ramsey Problem For any graphical property P ,

there exists a (smallest) integer R(P) such that every simple

graph G on n ≥ R(P) vertices, one of the following holds:

(i) G has property P .

(ii) Gc has property P .

(iii) G belongs to a well characterized family of graphs

(determined by P).
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– p. 21/32



Recent Progresses: Ramsey type problem

An example. P = having a nowhere zero 4-flow.

Theorem (JGT 1993) Let G be a simple graph on n ≥ 61

vertices. One of the following holds:

– p. 21/32



Recent Progresses: Ramsey type problem

An example. P = having a nowhere zero 4-flow.

Theorem (JGT 1993) Let G be a simple graph on n ≥ 61

vertices. One of the following holds:

(i) G has nowhere zero 4-flow.

– p. 21/32



Recent Progresses: Ramsey type problem

An example. P = having a nowhere zero 4-flow.

Theorem (JGT 1993) Let G be a simple graph on n ≥ 61

vertices. One of the following holds:

(i) G has nowhere zero 4-flow.

(ii) Gc has nowhere zero 4-flow.

– p. 21/32



Recent Progresses: Ramsey type problem

An example. P = having a nowhere zero 4-flow.

Theorem (JGT 1993) Let G be a simple graph on n ≥ 61

vertices. One of the following holds:

(i) G has nowhere zero 4-flow.

(ii) Gc has nowhere zero 4-flow.

(iii) Both G and Gc have vertices of degree 1.
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P = for any abelian group A with |A| ≥ 4, G is A-connected.

Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let

G be a simple graph on n ≥ 6 vertices. One of the following

holds:

(i) For any abelian group A with |A| ≥ 4, G is A-connected.

(ii) For any abelian group A with |A| ≥ 4, Gc is A-connected.

(iii) min{δ(G), δ(Gc)} ≤ 1.
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Recent Progresses: Ramsey type problem

P = being strongly Z3-connected.

Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let

G be a simple graph on n ≥ 44 vertices. One of the following

holds:

(i) G is strongly Z3-connected.

(ii) Gc is strongly Z3-connected.

(iii) min{δ(G), δ(Gc)} ≤ 3.
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Recent Progresses: Ramsey type problem

How about strongly Z2s+1-connectedness for s ≥ 2?

P = being strongly Z2s+1-connected.

Theorem (M. Han, X. Hou, J. Li, and HJL, SIDAM 2018) Let

G be a simple graph on n ≥ 1152s2 vertices. One of the

following holds:

(i) G is strongly Z2s+1-connected.

(ii) Gc is strongly Z2s+1-connected.

(iii) min{δ(G), δ(Gc)} ≤ 4s− 1.
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Recent Progresses: Extremal

problems/degree conditions

Theorem (Barat and Thomassen, JGT 2006) There exists a positive integer n1

such that every simple graph on n ≥ n1 vertices with minimum degree at least
n/2 is strongly Z3-connected.
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problems/degree conditions

Theorem (Barat and Thomassen, JGT 2006) There exists a positive integer n1

such that every simple graph on n ≥ n1 vertices with minimum degree at least
n/2 is strongly Z3-connected.

Theorem (G. Fan and C. Zhou, SIAM JDM 2008) Let G be a simple graph on
n ≥ 3 vertices such that for every pair of nonadjacent vertices u and v in G,
dG(u) + dG(v) ≥ n. Then with six exceptional graphs, G has a nowhere-zero
3-flow.

Theorem (R. Luo, R. Xu, J. Yin and G. Yu, EJC 2008) Let G be a simple graph on
n ≥ 3 vertices such that for every pair of nonadjacent vertices u and v in G,
dG(u) + dG(v) ≥ n. Then with twelve exceptional graphs, G is strongly
Z3-connected.
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problems/degree conditions

Theorem (G. Fan and C. Zhou, DM 2008) Let G be a simple graph on n ≥ 3

vertices such that dG(u) + dG(v) ≥ n, for every pair of adjacent vertices u and v

in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a
K+

3,n−3 or to one of the 5 other exceptional graphs.
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vertices such that dG(u) + dG(v) ≥ n, for every pair of adjacent vertices u and v

in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a
K+

3,n−3 or to one of the 5 other exceptional graphs.

K+
t,n−t is obtained from the complete bipartite graph Kt,n−t by adding one new

edge joining two independent vertices of degree n− t (n ≥ 2t).
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Recent Progresses: Extremal

problems/degree conditions

Theorem (G. Fan and C. Zhou, DM 2008) Let G be a simple graph on n ≥ 3

vertices such that dG(u) + dG(v) ≥ n, for every pair of adjacent vertices u and v

in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a
K+

3,n−3 or to one of the 5 other exceptional graphs.

K+
t,n−t is obtained from the complete bipartite graph Kt,n−t by adding one new

edge joining two independent vertices of degree n− t (n ≥ 2t).

Theorem (X. Zhang et al., DM 2010) Let G be a simple graph on n ≥ 3 vertices
such that dG(u) + dG(v) ≥ n, for every pair of adjacent vertices u and v in G.
G ∈ Mo

3 if and only if G is not isomorphic to a member of
{K2,n−2, K

+
2,n−2,K3,n−3,K

+
3,n−3} or to one of the 15 other exceptional graphs.
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Recent Progresses: Extremal

problems/degree conditions

Theorem (X. Li et al., DM 2012) Let G be a simple

2-edge-connected graph on n ≥ 3 vertices. If for every

uv /∈ E(G), max{dG(u), dG(v)} ≥ n/2, then G ∈ Mo
3 if and

only if G is not contractible to one of 22 exceptional graphs.
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problems/degree conditions

Theorem (X. Li et al., DM 2012) Let G be a simple

2-edge-connected graph on n ≥ 3 vertices. If for every

uv /∈ E(G), max{dG(u), dG(v)} ≥ n/2, then G ∈ Mo
3 if and

only if G is not contractible to one of 22 exceptional graphs.

Theorem (J. Yan, EJC 2013) Let G be a 2-edge-connected

graph of order n such that each pair of vertices x and y at

distance 2 satisfies max{dG(x), dG(y)} > n
2 , then either G is

strongly Z3-connected or, with only one exception, G

belongs to a family of non strongly Z3-connected graphs

related to the "odd-wheel and fan" family defined in [J.

Combin. Theory Ser. B 98 (2008) 1325-1336].
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Recent Progresses: Extremal

problems/degree conditions

Observations The theorems above have the following in common (for s = 1):
under certain degree conditions, either these graphs are strongly
Z2s+1-connected, or they can be contracted into a family of finitely many non
strongly Z2s+1-connected graphs, or, in some cases, the independence number of
the exceptional graphs is unbounded.
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Observations The theorems above have the following in common (for s = 1):
under certain degree conditions, either these graphs are strongly
Z2s+1-connected, or they can be contracted into a family of finitely many non
strongly Z2s+1-connected graphs, or, in some cases, the independence number of
the exceptional graphs is unbounded.

Next Question: The results above are on strongly Z3-connected graphs. Can the
same be done for strongly Z2s+1-connected graphs with s ≥ 2?

Next Question: Can the same structural properties be preserved if we replace the
lower bounds in the theorems above by an arbitrary non-trivial linear function of n,
the number of vertices of the graph?
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Recent Progresses: Extremal

problems/degree conditions

Theorem (P.Li and HJL, SIDAM 2014) Let G be a simple

graph on n vertices. For any integers s > 0 and for any real

numbers α and β with 0 < α < 1, there exist an integer

N = N(α, s) and a finite family F(α, s) of graphs not in

Mo
2s+1 such that if n ≥ N and if for every pair of nonadjacent

vertices u and v in G, dG(u) + dG(v) ≥ αn+ β then either G

is strongly Z2s+1-connected or G can be contracted to a

member in F(α, s).
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Theorem (P.Li and HJL, SIDAM 2014) Let G be a simple

graph on n vertices. For any integers s > 0 and for any real

numbers α and β with 0 < α < 1, there exist an integer

N = N(α, s) and a finite family F(α, s) of graphs not in

Mo
2s+1 such that if n ≥ N and if for every pair of nonadjacent

vertices u and v in G, dG(u) + dG(v) ≥ αn+ β then either G

is strongly Z2s+1-connected or G can be contracted to a

member in F(α, s).

Problem This is the first attempt in this direction, and is an

Ore-Type condition. How about other degree conditions?
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problems/degree conditions

Observation. If for any uv /∈ E(G), dG(u) + dG(v) ≥ f(n)

then max{dG(u), dG(v)} ≥ f(n)
2 . This motivates the following

study.
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problems/degree conditions

Observation. If for any uv /∈ E(G), dG(u) + dG(v) ≥ f(n)

then max{dG(u), dG(v)} ≥ f(n)
2 . This motivates the following

study.

Theorem (A. Yu, M. Han, J. Liu, HJL, DM 2017) For any

integer s > 0 and real numbers a, b with 0 < a < 1, there

exist an integer N = N(a, b, s) and a finite family J0(a, s) of

non-strongly Z2s+1-connected graphs such that for any

connected simple graph G with order n ≥ N , if

for any uv /∈ E(G), max{dG(u), dG(v)} ≥ an+ b,

then G is strongly Z2s+1-connected if and only if G cannot

be contracted to a member in J0(a, s).
– p. 30/32



Recent Progresses: Extremal

problems/degree conditions

For any integer n and s, define f1(n, s) = max{|E(G)| : G is

simple, |V (G)| = n and G /∈ Mo
2s+1 but for any e ∈ E(G),

G/e ∈ Mo
2s+1} and
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Recent Progresses: Extremal

problems/degree conditions

For any integer n and s, define f1(n, s) = max{|E(G)| : G is

simple, |V (G)| = n and G /∈ Mo
2s+1 but for any e ∈ E(G),

G/e ∈ Mo
2s+1} and

f2(n, s) = max{|E(G)| : G is simple, |V (G)| = n and

G /∈ Mo
2s+1 but for any e ∈ E(Gc), G+ e ∈ Mo

2s+1}

Problem Determine f1(n, s) and f2(n, s).
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Thank You
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