Some recent progresses in group connectivity and modulo orientations of graphs

Hong-Jian Lai

In honor of Professor Yanpei LIU

G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.

G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.

A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A - \{0\}$.

- G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.
- A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A \{0\}$.
- $F(G, A) = \{ f : E \mapsto A \}, \text{ and } F^*(G, A) = \{ f : E \mapsto A^* \}.$

- G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.
- A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A \{0\}$.
- $F(G, A) = \{ f : E \mapsto A \}, \text{ and } F^*(G, A) = \{ f : E \mapsto A^* \}.$
- Fix D, an orientation of G, where $(u, v) \in E(D)$ iff the arc is oriented from u to v.

- G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.
- A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A \{0\}$.
- $F(G, A) = \{ f : E \mapsto A \}, \text{ and } F^*(G, A) = \{ f : E \mapsto A^* \}.$
- Fix D, an orientation of G, where $(u, v) \in E(D)$ iff the arc is oriented from u to v.
- For each $f: E \mapsto A$, define $\partial f: V(G) \mapsto A$ by

- G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.
- A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A \{0\}$.
- $F(G, A) = \{ f : E \mapsto A \}, \text{ and } F^*(G, A) = \{ f : E \mapsto A^* \}.$
- Fix D, an orientation of G, where $(u, v) \in E(D)$ iff the arc is oriented from u to v.

For each
$$f: E \mapsto A$$
, define $\partial f: V(G) \mapsto A$ by

$$\partial f(v) = \sum_{(v,u) \in E(D)} f(v,u) - \sum_{(u,v) \in E(D)} f(u,v)).$$

- G: = a graph, with vertex set $V = V(G) = \{v_1, v_2, \dots, v_n\}$, and edge set $E = E(G) = \{e_1, e_2, \dots, e_m\}$.
- A: = an abelian (additive) group with identity 0, and with $|A| \ge 3$ and $A^* = A \{0\}$.
- $F(G, A) = \{ f : E \mapsto A \}, \text{ and } F^*(G, A) = \{ f : E \mapsto A^* \}.$
- Fix D, an orientation of G, where $(u, v) \in E(D)$ iff the arc is oriented from u to v.
- For each $f: E \mapsto A$, define $\partial f: V(G) \mapsto A$ by
- $\partial f(v) = \sum_{(v,u) \in E(D)} f(v,u) \sum_{(u,v) \in E(D)} f(u,v)).$
- $\blacksquare \partial f(v)$ is the net-out *f*-flow from *v*.

A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).

- A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).
- \blacksquare \mathbb{Z} : = the abelian group of integers.

- A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).
- \blacksquare \mathbb{Z} : = the abelian group of integers.
- \mathbb{Z}_k : = the abelian group of mod k integers.

- A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).
- \blacksquare \mathbb{Z} : = the abelian group of integers.
- \mathbb{Z}_k : = the abelian group of mod k integers.
- A function $f \in F^*(G, \mathbb{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if Df = 0, and if $\forall e \in E(G), 0 < |f(e)| < k$.

- A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).
- \blacksquare \mathbb{Z} : = the abelian group of integers.
- \mathbb{Z}_k : = the abelian group of mod k integers.
- A function $f \in F^*(G, \mathbb{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if Df = 0, and if $\forall e \in E(G), 0 < |f(e)| < k$.
- Theorem (Tutte) If G has a k-NZF, then G has a (k+1)-NZF.

- A function $f \in F^*(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $\partial f = \mathbf{0}$ (the all zero vector).
- \blacksquare \mathbb{Z} : = the abelian group of integers.
- \mathbb{Z}_k : = the abelian group of mod k integers.
- A function $f \in F^*(G, \mathbb{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if Df = 0, and if $\forall e \in E(G), 0 < |f(e)| < k$.
- **Theorem** (Tutte) If G has a k-NZF, then G has a (k + 1)-NZF.
- Theorem (Tutte) A graph G has an A-NZF if and only if G has an |A|-NZF.

Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-NZF or a k-NZF is independent of the choice of the orientation.

- Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-NZF or a k-NZF is independent of the choice of the orientation.
- Fact: If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).

- Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-NZF or a k-NZF is independent of the choice of the orientation.
- Fact: If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).
 - Tutte's 5-flow Conjecture If $\kappa'(G) \ge 2$, then G has a 5-NZF.

- Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-NZF or a k-NZF is independent of the choice of the orientation.
- Fact: If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).
 - Tutte's 5-flow Conjecture If $\kappa'(G) \ge 2$, then G has a 5-NZF.
 - Tutte's 4-flow Conjecture If $\kappa'(G) \ge 2$ and if G does not have a subgraph contracted to the Petersen graph, then G has a 4-NZF.

- Fact: If some orientation D(G) has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-NZF or a k-NZF is independent of the choice of the orientation.
- Fact: If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).
 - Tutte's 5-flow Conjecture If $\kappa'(G) \ge 2$, then G has a 5-NZF.
- Tutte's 4-flow Conjecture If $\kappa'(G) \ge 2$ and if G does not have a subgraph contracted to the Petersen graph, then G has a 4-NZF.
- Tutte's 3-flow Conjecture If $\kappa'(G) \ge 4$, then G has a 3-NZF.

Nowhere zero flows and colorings

Theorem (Tutte) For a plane graph G, G has a face k-coloring if and only if G has a k-NZF.

Nowhere zero flows and colorings

- Theorem (Tutte) For a plane graph G, G has a face k-coloring if and only if G has a k-NZF.
- These conjectures are theorems when restricted to planar graphs (need 4 Color Theorem for the 4-flow conjecture).

The nowhere zero A-flow problem seeks to find a nowhere zero solution f to the homogeneous system of equation linear equations $\partial f = 0$.

- The nowhere zero A-flow problem seeks to find a nowhere zero solution f to the homogeneous system of equation linear equations $\partial f = 0$.
- The corresponding nonhomogeneous problem is, for a given vector $b: V(G) \mapsto A$, determine if there is a nowhere zero solution f to the system $\partial f = b$.

$$\blacksquare \sum_{v \in V(G)} b(v) =$$

$$\sum_{v \in V(G)} b(v) = \sum_{v \in V(G)} \left(\sum_{(v,u) \in E(D)} f(v,u) - \sum_{(u,v) \in E(D)} f(u,v) \right)$$

$$\sum_{v \in V(G)} b(v) = \sum_{v \in V(G)} \left(\sum_{(v,u) \in E(D)} f(v,u) - \sum_{(u,v) \in E(D)} f(u,v) \right)$$
$$= 0,$$

A necessary condition: If $\partial f = b$ has a nowhere zero solution f, then $\sum_{v \in V(G)} b(v) = 0$ in A.

$$\sum_{v \in V(G)} b(v) = \sum_{v \in V(G)} \left(\sum_{(v,u) \in E(D)} f(v,u) - \sum_{(u,v) \in E(D)} f(u,v) \right)$$

= 0,

as for every arc (u, v), both f(u, v) and -f(u, v) occur in the summation exactly once.

A graph *G* is *A*-connected if for any $b : V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0, \exists f \in F^*(G, A)$ such that $\partial f = b$.

- A graph *G* is *A*-connected if for any $b : V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0$, $\exists f \in F^*(G, A)$ such that $\partial f = b$.
- Conjecture 1 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 3$, then for any abelian group A with $|A| \ge 5$, G is A-connected.

- A graph *G* is *A*-connected if for any $b : V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0, \exists f \in F^*(G, A)$ such that $\partial f = b$.
- Conjecture 1 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 3$, then for any abelian group A with $|A| \ge 5$, G is A-connected.
- Conjecture 1 implies Tutte's 5-flow conjecture.

- A graph *G* is *A*-connected if for any $b : V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0, \exists f \in F^*(G, A)$ such that $\partial f = b$.
- Conjecture 1 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 3$, then for any abelian group A with $|A| \ge 5$, G is A-connected.
- Conjecture 1 implies Tutte's 5-flow conjecture.
- Conjecture 2 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 5$, then for any abelian group A with $|A| \ge 3$, G is A-connected.

- A graph *G* is *A*-connected if for any $b : V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0, \exists f \in F^*(G, A)$ such that $\partial f = b$.
- Conjecture 1 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 3$, then for any abelian group A with $|A| \ge 5$, G is A-connected.
- Conjecture 1 implies Tutte's 5-flow conjecture.
- Conjecture 2 (Jaeger et al, JCTB 1992) If $\kappa'(G) \ge 5$, then for any abelian group A with $|A| \ge 3$, G is A-connected.
- Conjecture 2 implies Tutte's 3-flow conjecture.

Tutte observed relationship between Z₃-NZF and modulo 3 orientation.

- Tutte observed relationship between Z₃-NZF and modulo 3 orientation.
- Suppose that, under an orientation, G has a \mathbb{Z}_3 -NZF $f: E(G) \mapsto \{1, -1\}$ in \mathbb{Z}_3 .

- Tutte observed relationship between Z₃-NZF and modulo 3 orientation.
- Suppose that, under an orientation, G has a \mathbb{Z}_3 -NZF $f: E(G) \mapsto \{1, -1\}$ in \mathbb{Z}_3 .
- For each (u, v) with f(u, v) = -1, change the orientation to (v, u) and redefine f(v, u) = 1.
The group connectivity problem

- Tutte observed relationship between Z₃-NZF and modulo 3 orientation.
- Suppose that, under an orientation, G has a \mathbb{Z}_3 -NZF $f: E(G) \mapsto \{1, -1\}$ in \mathbb{Z}_3 .
- For each (u, v) with f(u, v) = -1, change the orientation to (v, u) and redefine f(v, u) = 1.
- The resulting orientation D of G satisfying that, for each v,

The group connectivity problem

- Tutte observed relationship between Z₃-NZF and modulo 3 orientation.
- Suppose that, under an orientation, G has a \mathbb{Z}_3 -NZF $f: E(G) \mapsto \{1, -1\}$ in \mathbb{Z}_3 .
- For each (u, v) with f(u, v) = -1, change the orientation to (v, u) and redefine f(v, u) = 1.
- The resulting orientation D of G satisfying that, for each v,

$$d_D^+(v) - d_D^-(v) = \partial f(v) \equiv 0 \text{ (mod 3).}$$

The group connectivity problem

- Tutte observed relationship between Z₃-NZF and modulo 3 orientation.
- Suppose that, under an orientation, G has a \mathbb{Z}_3 -NZF $f: E(G) \mapsto \{1, -1\}$ in \mathbb{Z}_3 .
- For each (u, v) with f(u, v) = -1, change the orientation to (v, u) and redefine f(v, u) = 1.
- The resulting orientation D of G satisfying that, for each v,
- $d_D^+(v) d_D^-(v) = \partial f(v) \equiv 0 \text{ (mod 3).}$
- This orientation *D* is called a mod 3-orientation of *G*.

 $\blacksquare \mathbb{Z}_k =$ (additive) cyclic group of k.

- $\blacksquare \mathbb{Z}_k =$ (additive) cyclic group of k.
- Modulo Orientation Problem. Given an integer k > 1 and a graph G, is there an orientation D = D(G) such that for every vertex $v \in V(G)$, $d_D^+(v) d_D^-(v) \equiv 0 \pmod{k}$?

- $\blacksquare \mathbb{Z}_k =$ (additive) cyclic group of k.
- Modulo Orientation Problem. Given an integer k > 1 and a graph G, is there an orientation D = D(G) such that for every vertex $v \in V(G)$, $d_D^+(v) d_D^-(v) \equiv 0 \pmod{k}$?

If such an orientation exists, then G admits a mod k-orientation.

- $\blacksquare \mathbb{Z}_k =$ (additive) cyclic group of k.
- Modulo Orientation Problem. Given an integer k > 1 and a graph G, is there an orientation D = D(G) such that for every vertex $v \in V(G)$, $d_D^+(v) d_D^-(v) \equiv 0 \pmod{k}$?
- If such an orientation exists, then G admits a mod k-orientation.
- \blacksquare M_k := family of all graphs admitting a mod k-orientation.

Fact: If k is even, then a connected G is in M_k iff G is Eulerian.

- **Fact:** If k is even, then a connected G is in M_k iff G is Eulerian.
- Theorem (Tutte) If G is a 3-regular graph, then $G \in M_3$ iff G is bipartite.

- **Fact:** If k is even, then a connected G is in M_k iff G is Eulerian.
- Theorem (Tutte) If G is a 3-regular graph, then $G \in M_3$ iff G is bipartite.
- Proposition (DAM 2014) For ny integer $s \ge 1$, if G is a (2s+1)-regular graph, then $G \in M_{2s+1}$ iff G is bipartite.

Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.

- Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.
- Conjecture (Jaeger 1984) For any integer $s \ge 1$, every 4s-edge-connected graph has a mod (2s + 1)-orientation.

- Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.
- Conjecture (Jaeger 1984) For any integer $s \ge 1$, every 4s-edge-connected graph has a mod (2s + 1)-orientation.
- Theorem (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM 2014) A connected graph admits a mod (2s + 1)-orientation if and only if it is a contraction of a (2s + 1)-regular bipartite graph.

- Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.
- Conjecture (Jaeger 1984) For any integer $s \ge 1$, every 4s-edge-connected graph has a mod (2s + 1)-orientation.
- Theorem (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM 2014) A connected graph admits a mod (2s + 1)-orientation if and only if it is a contraction of a (2s + 1)-regular bipartite graph.
- Problem For any integer $s \ge 1$, there exists a smallest integer h(s) such that every h(s)-edge-connected graph is a contraction of a (2s + 1)-regular bipartite graph.

- Conjecture (Tutte, 1954) Every 4-edge-connected graph has a mod 3-orientation.
- Conjecture (Jaeger 1984) For any integer $s \ge 1$, every 4s-edge-connected graph has a mod (2s + 1)-orientation.
- Theorem (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM 2014) A connected graph admits a mod (2s + 1)-orientation if and only if it is a contraction of a (2s + 1)-regular bipartite graph.
- Problem For any integer $s \ge 1$, there exists a smallest integer h(s) such that every h(s)-edge-connected graph is a contraction of a (2s + 1)-regular bipartite graph.
- Problem For any integer $s \ge 1$, there exists a smallest integer g(s) such that every g(s)-edge-disjoint spanning trees is a contraction of a (2s + 1)-regular bipartite graph.

If for any function $b: V(G) \to \mathbb{Z}_{2s+1}$ satisfying $\sum_{v \in V(G)} b(v) \equiv 0 \pmod{2s+1}$, *G* always has an orientation *D* such that for every vertex $v \in V(G)$, $d_D^+(v) - d_D^-(v) \equiv b(v)$ mod 2s + 1, then *G* is strongly \mathbb{Z}_{2s+1} -connected.

- If for any function $b: V(G) \to \mathbb{Z}_{2s+1}$ satisfying $\sum_{v \in V(G)} b(v) \equiv 0 \pmod{2s+1}$, *G* always has an orientation *D* such that for every vertex $v \in V(G)$, $d_D^+(v) - d_D^-(v) \equiv b(v)$ mod 2s + 1, then *G* is strongly \mathbb{Z}_{2s+1} -connected.
- If G is strongly \mathbb{Z}_{2s+1} -connected, then G is in M_{2s+1} .

- If for any function $b: V(G) \to \mathbb{Z}_{2s+1}$ satisfying $\sum_{v \in V(G)} b(v) \equiv 0 \pmod{2s+1}$, *G* always has an orientation *D* such that for every vertex $v \in V(G)$, $d_D^+(v) - d_D^-(v) \equiv b(v)$ mod 2s + 1, then *G* is strongly \mathbb{Z}_{2s+1} -connected.
- If G is strongly \mathbb{Z}_{2s+1} -connected, then G is in M_{2s+1} .
- Example (Y. Liang, J. Liu, J. Meng, Y. Shao and HJL, DAM 2014) A complete graph K_n is strongly \mathbb{Z}_{2s+1} -connected iff $n \ge 4s + 1$.

Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.

- Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.
- Problem For any integer $s \ge 1$, determine the smallest integer f(s) such that every f(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.

- Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.
- Problem For any integer $s \ge 1$, determine the smallest integer f(s) such that every f(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.
- Problem (SIDAM 2007) Is f(s) = 4s + 1? (This is now known to be incorrect.)

- Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.
- Problem For any integer $s \ge 1$, determine the smallest integer f(s) such that every f(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.
- Problem (SIDAM 2007) Is f(s) = 4s + 1? (This is now known to be incorrect.)
- Theorem (M. Ham, X. Hou, J. Li and HJL, SIDAM 2018) The following are equivalent for an integra function k(s).

- Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.
- Problem For any integer $s \ge 1$, determine the smallest integer f(s) such that every f(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.
- Problem (SIDAM 2007) Is f(s) = 4s + 1? (This is now known to be incorrect.)
- Theorem (M. Ham, X. Hou, J. Li and HJL, SIDAM 2018) The following are equivalent for an integra function k(s).
- (i) every k(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.

- Conjecture (Jaeger et al, 1992) Every 5-edge-connected graph is strongly \mathbb{Z}_3 -connected.
- Problem For any integer $s \ge 1$, determine the smallest integer f(s) such that every f(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.
- Problem (SIDAM 2007) Is f(s) = 4s + 1? (This is now known to be incorrect.)
- Theorem (M. Ham, X. Hou, J. Li and HJL, SIDAM 2018) The following are equivalent for an integra function k(s).
- (i) every k(s)-edge-connected graph is strongly \mathbb{Z}_{2s+1} -connected.
- (ii) every k(s)-edge-connected bipartite graph is strongly \mathbb{Z}_{2s+1} -connected.

Recent progresses and problems

Edge-density condition: Edge-connectivity and edge-disjoint spanning trees

Recent progresses and problems

- Edge-density condition: Edge-connectivity and edge-disjoint spanning trees
- The Ramsey type problem

Recent progresses and problems

- Edge-density condition: Edge-connectivity and edge-disjoint spanning trees
- The Ramsey type problem
- Degree conditions/Extremal problems

Let s > 0 be an integer.

- Let s > 0 be an integer.
- Theorem (Thomassen, JCTB 2012) If $\kappa'(G) \ge 8$, then G is strongly \mathbb{Z}_3 -connected.

- Let s > 0 be an integer.
- Theorem (Thomassen, JCTB 2012) If $\kappa'(G) \ge 8$, then G is strongly \mathbb{Z}_3 -connected.
- Theorem (Thomassen, JCTB 2012) If $\kappa'(G) \ge 8s^2 + 10s + 3$, then G is strongly \mathbb{Z}_{2s+1} -connected.

- Let s > 0 be an integer.
- Theorem (Thomassen, JCTB 2012) If $\kappa'(G) \ge 8$, then G is strongly \mathbb{Z}_3 -connected.
- Theorem (Thomassen, JCTB 2012) If $\kappa'(G) \ge 8s^2 + 10s + 3$, then G is strongly \mathbb{Z}_{2s+1} -connected.
- Theorem (Lovasz, Thomassen, Wu, Zhang, JCTB 2013, and Wu 2012 Dissertation) If $\kappa'(G) \ge 8s$, then G is strongly \mathbb{Z}_{2s+1} -connected.

Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.

- Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.
- (i) For every integer $p \ge 3$, there exists a 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.

- Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.
- (i) For every integer $p \ge 3$, there exists a 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.
- (ii) For every integer $p \ge 5$, there exists a (4p+1)-edge-connected graph admitting no modulo (2p+1)-orientation.

- Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.
- (i) For every integer $p \ge 3$, there exists a 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.
- (ii) For every integer $p \ge 5$, there exists a (4p+1)-edge-connected graph admitting no modulo (2p+1)-orientation.
- This disproves the following:

- Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.
- (i) For every integer $p \ge 3$, there exists a 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.
- (ii) For every integer $p \ge 5$, there exists a (4p + 1)-edge-connected graph admitting no modulo (2p + 1)-orientation.
- This disproves the following:
- (i) Jaeger's conjecture: Every 4p-edge-connected graph admitting no modulo (2p+1)-orientation.
- Theorem (M. Han, J. Li, Y. Wu and CQ Zhang, JCTB 2018) Each of the following holds.
- (i) For every integer $p \ge 3$, there exists a 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.
- (ii) For every integer $p \ge 5$, there exists a (4p + 1)-edge-connected graph admitting no modulo (2p + 1)-orientation.
- This disproves the following:
- (i) Jaeger's conjecture: Every 4p-edge-connected graph admitting no modulo (2p + 1)-orientation.
- (ii) Conjecture: (SIDAM 2007) Every (4p + 1)-edge-connected graph is strong \mathbb{Z}_{2p+1} -connected.

Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with 4-edge-disjoint spanning trees is strongly \mathbb{Z}_3 -connected.

- Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with 4-edge-disjoint spanning trees is strongly \mathbb{Z}_3 -connected.
- Theorem (J. Li, R. Luo, HJL, SIDAM 2017) Every \mathbb{Z}_{2s+1} -connected graph has 2s-edge-disjoint spanning trees.

- Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with 4-edge-disjoint spanning trees is strongly \mathbb{Z}_3 -connected.
- Theorem (J. Li, R. Luo, HJL, SIDAM 2017) Every \mathbb{Z}_{2s+1} -connected graph has 2s-edge-disjoint spanning trees.
- Problem For any integer $s \ge 1$, there exists a smallest integer $\phi(s)$ such that every $\phi(s)$ -edge-disjoint spanning trees is strongly \mathbb{Z}_{2s+1} -connected.

- Theorem (M. Han, J. Li, HJL, JGT 2018) Every graph with 4-edge-disjoint spanning trees is strongly \mathbb{Z}_3 -connected.
- Theorem (J. Li, R. Luo, HJL, SIDAM 2017) Every \mathbb{Z}_{2s+1} -connected graph has 2s-edge-disjoint spanning trees.
- Problem For any integer s ≥ 1, there exists a smallest integer φ(s) such that every φ(s)-edge-disjoint spanning trees is strongly Z_{2s+1}-connected.
- Problem Can $\phi(3) = 3$? Can $\phi(s) = 2s + 1$?

- G: = simple graph with n = |V(G)|.
- \square G^c : = $K_n E(G)$, the complement of G

- G: = simple graph with n = |V(G)|.
- \square G^c : = $K_n E(G)$, the complement of G
 - Classical Ramsey Theorem For any positive integers k, ℓ , there exists a (smallest) integer $R(k, \ell)$ such that every simple graph G on $n \ge R(k, \ell)$ vertices, one of the following holds:

- G: = simple graph with n = |V(G)|.
- \square G^c : = $K_n E(G)$, the complement of G
- Classical Ramsey Theorem For any positive integers k, ℓ , there exists a (smallest) integer $R(k, \ell)$ such that every simple graph G on $n \ge R(k, \ell)$ vertices, one of the following holds:
- (i) G contains K_k as a subgraph.

- G: = simple graph with n = |V(G)|.
- \square G^c : = $K_n E(G)$, the complement of G
- Classical Ramsey Theorem For any positive integers k, ℓ , there exists a (smallest) integer $R(k, \ell)$ such that every simple graph G on $n \ge R(k, \ell)$ vertices, one of the following holds:
- (i) G contains K_k as a subgraph.
- (ii) G^c contains K_ℓ as a subgraph.

- G: = simple graph with n = |V(G)|.
- \square G^c : = $K_n E(G)$, the complement of G
- Classical Ramsey Theorem For any positive integers k, ℓ , there exists a (smallest) integer $R(k, \ell)$ such that every simple graph G on $n \ge R(k, \ell)$ vertices, one of the following holds:
- (i) G contains K_k as a subgraph.
- (ii) G^c contains K_ℓ as a subgraph.

The problem is to show the existence of $R(k, \ell)$ and determine the value of $R(k, \ell)$.

 \mathbf{P} : = a graphical property.

- $\square \mathcal{P}$: = a graphical property.
- Generalized Ramsey Problem For any graphical property \mathcal{P} , there exists a (smallest) integer $R(\mathcal{P})$ such that every simple graph G on $n \ge R(\mathcal{P})$ vertices, one of the following holds:

- $\square \mathcal{P}$: = a graphical property.
- Generalized Ramsey Problem For any graphical property \mathcal{P} , there exists a (smallest) integer $R(\mathcal{P})$ such that every simple graph G on $n \ge R(\mathcal{P})$ vertices, one of the following holds:

(i) G has property \mathcal{P} .

- $\square \mathcal{P}$: = a graphical property.
- Generalized Ramsey Problem For any graphical property \mathcal{P} , there exists a (smallest) integer $R(\mathcal{P})$ such that every simple graph G on $n \ge R(\mathcal{P})$ vertices, one of the following holds:
- **(i)** G has property \mathcal{P} .
- **(ii)** G^c has property \mathcal{P} .

- \mathbf{P} : = a graphical property.
- Generalized Ramsey Problem For any graphical property \mathcal{P} , there exists a (smallest) integer $R(\mathcal{P})$ such that every simple graph G on $n \ge R(\mathcal{P})$ vertices, one of the following holds:
- **(i)** G has property \mathcal{P} .
- (ii) G^c has property \mathcal{P} .
- (iii) G belongs to a well characterized family of graphs (determined by P).

An example. \mathcal{P} = having a nowhere zero 4-flow.

- An example. \mathcal{P} = having a nowhere zero 4-flow.
- Theorem (JGT 1993) Let G be a simple graph on $n \ge 61$ vertices. One of the following holds:

- An example. \mathcal{P} = having a nowhere zero 4-flow.
- Theorem (JGT 1993) Let G be a simple graph on $n \ge 61$ vertices. One of the following holds:
- (i) *G* has nowhere zero 4-flow.

- An example. \mathcal{P} = having a nowhere zero 4-flow.
- Theorem (JGT 1993) Let G be a simple graph on $n \ge 61$ vertices. One of the following holds:
- (i) *G* has nowhere zero 4-flow.
- (ii) G^c has nowhere zero 4-flow.

- An example. \mathcal{P} = having a nowhere zero 4-flow.
- Theorem (JGT 1993) Let G be a simple graph on $n \ge 61$ vertices. One of the following holds:
- (i) *G* has nowhere zero 4-flow.
- (ii) G^c has nowhere zero 4-flow.
- (iii) Both G and G^c have vertices of degree 1.

 $\square \mathcal{P}$ = for any abelian group A with $|A| \ge 4$, G is A-connected.

- $\square \mathcal{P}$ = for any abelian group A with $|A| \ge 4$, G is A-connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 6$ vertices. One of the following holds:

- $\square \mathcal{P}$ = for any abelian group A with $|A| \ge 4$, G is A-connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 6$ vertices. One of the following holds:
- (i) For any abelian group A with $|A| \ge 4$, G is A-connected.

- $\square \mathcal{P}$ = for any abelian group A with $|A| \ge 4$, G is A-connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 6$ vertices. One of the following holds:
- (i) For any abelian group A with $|A| \ge 4$, G is A-connected.
- (ii) For any abelian group A with $|A| \ge 4$, G^c is A-connected.

- $\square \mathcal{P}$ = for any abelian group A with $|A| \ge 4$, G is A-connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let G be a simple graph on n ≥ 6 vertices. One of the following holds:
- (i) For any abelian group A with $|A| \ge 4$, G is A-connected.
- (ii) For any abelian group A with $|A| \ge 4$, G^c is A-connected.
- (iii) $\min\{\delta(G), \delta(G^c)\} \leq 1$.

 $\square \mathcal{P}$ = being strongly \mathbb{Z}_3 -connected.

- $\square \mathcal{P}$ = being strongly \mathbb{Z}_3 -connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 44$ vertices. One of the following holds:

- $\square \mathcal{P}$ = being strongly \mathbb{Z}_3 -connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 44$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_3 -connected.

- $\square \mathcal{P}$ = being strongly \mathbb{Z}_3 -connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let *G* be a simple graph on $n \ge 44$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_3 -connected.
- (ii) G^c is strongly \mathbb{Z}_3 -connected.

- $\square \mathcal{P}$ = being strongly \mathbb{Z}_3 -connected.
- Theorem (X. Hou, P. Li, CQ Zhang and HJL, JGT 2011) Let G be a simple graph on $n \ge 44$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_3 -connected.
- (ii) G^c is strongly \mathbb{Z}_3 -connected.
- $\blacksquare \text{(iii)} \min\{\delta(G), \delta(G^c)\} \leq 3.$

• How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \geq 2$?

- How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \geq 2$?
- $\square \mathcal{P}$ = being strongly \mathbb{Z}_{2s+1} -connected.

- How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \ge 2$?
- $\square \mathcal{P}$ = being strongly \mathbb{Z}_{2s+1} -connected.
- Theorem (M. Han, X. Hou, J. Li, and HJL, SIDAM 2018) Let *G* be a simple graph on $n \ge 1152s^2$ vertices. One of the following holds:

- How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \ge 2$?
- $\square \mathcal{P}$ = being strongly \mathbb{Z}_{2s+1} -connected.
- Theorem (M. Han, X. Hou, J. Li, and HJL, SIDAM 2018) Let *G* be a simple graph on $n \ge 1152s^2$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_{2s+1} -connected.

- How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \ge 2$?
- $\square \mathcal{P}$ = being strongly \mathbb{Z}_{2s+1} -connected.
- Theorem (M. Han, X. Hou, J. Li, and HJL, SIDAM 2018) Let *G* be a simple graph on $n \ge 1152s^2$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_{2s+1} -connected.
- (ii) G^c is strongly \mathbb{Z}_{2s+1} -connected.
Recent Progresses: Ramsey type problem

- How about strongly \mathbb{Z}_{2s+1} -connectedness for $s \geq 2$?
- $\square \mathcal{P}$ = being strongly \mathbb{Z}_{2s+1} -connected.
- Theorem (M. Han, X. Hou, J. Li, and HJL, SIDAM 2018) Let G be a simple graph on $n \ge 1152s^2$ vertices. One of the following holds:
- (i) G is strongly \mathbb{Z}_{2s+1} -connected.
- (ii) G^c is strongly \mathbb{Z}_{2s+1} -connected.
- $\blacksquare \text{(iii)} \min\{\delta(G), \delta(G^c)\} \le 4s 1.$

problems/degree conditions

Theorem (Barat and Thomassen, JGT 2006) There exists a positive integer n_1 such that every simple graph on $n \ge n_1$ vertices with minimum degree at least n/2 is strongly \mathbb{Z}_3 -connected.

- Theorem (Barat and Thomassen, JGT 2006) There exists a positive integer n_1 such that every simple graph on $n \ge n_1$ vertices with minimum degree at least n/2 is strongly \mathbb{Z}_3 -connected.
- Theorem (G. Fan and C. Zhou, SIAM JDM 2008) Let G be a simple graph on $n \ge 3$ vertices such that for every pair of nonadjacent vertices u and v in G, $d_G(u) + d_G(v) \ge n$. Then with six exceptional graphs, G has a nowhere-zero 3-flow.

- Theorem (Barat and Thomassen, JGT 2006) There exists a positive integer n_1 such that every simple graph on $n \ge n_1$ vertices with minimum degree at least n/2 is strongly \mathbb{Z}_3 -connected.
- Theorem (G. Fan and C. Zhou, SIAM JDM 2008) Let G be a simple graph on $n \ge 3$ vertices such that for every pair of nonadjacent vertices u and v in G, $d_G(u) + d_G(v) \ge n$. Then with six exceptional graphs, G has a nowhere-zero 3-flow.
- Theorem (R. Luo, R. Xu, J. Yin and G. Yu, EJC 2008) Let G be a simple graph on $n \ge 3$ vertices such that for every pair of nonadjacent vertices u and v in G, $d_G(u) + d_G(v) \ge n$. Then with twelve exceptional graphs, G is strongly \mathbb{Z}_3 -connected.

problems/degree conditions

Theorem (G. Fan and C. Zhou, DM 2008) Let G be a simple graph on $n \ge 3$ vertices such that $d_G(u) + d_G(v) \ge n$, for every pair of adjacent vertices u and v in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a $K_{3,n-3}^+$ or to one of the 5 other exceptional graphs.

- Theorem (G. Fan and C. Zhou, DM 2008) Let G be a simple graph on $n \ge 3$ vertices such that $d_G(u) + d_G(v) \ge n$, for every pair of adjacent vertices u and v in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a $K_{3,n-3}^+$ or to one of the 5 other exceptional graphs.
- K⁺_{t,n-t} is obtained from the complete bipartite graph $K_{t,n-t}$ by adding one new edge joining two independent vertices of degree n t ($n \ge 2t$).

- Theorem (G. Fan and C. Zhou, DM 2008) Let G be a simple graph on $n \ge 3$ vertices such that $d_G(u) + d_G(v) \ge n$, for every pair of adjacent vertices u and v in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to a $K_{3,n-3}^+$ or to one of the 5 other exceptional graphs.
- K⁺_{t,n-t} is obtained from the complete bipartite graph $K_{t,n-t}$ by adding one new edge joining two independent vertices of degree n t ($n \ge 2t$).
 - Theorem (X. Zhang et al., DM 2010) Let G be a simple graph on $n \ge 3$ vertices such that $d_G(u) + d_G(v) \ge n$, for every pair of adjacent vertices u and v in G. $G \in M_3^o$ if and only if G is not isomorphic to a member of $\{K_{2,n-2}, K_{2,n-2}^+, K_{3,n-3}, K_{3,n-3}^+\}$ or to one of the 15 other exceptional graphs.

Recent Progresses: Extremal problems/degree conditions

Theorem (X. Li et al., DM 2012) Let G be a simple 2-edge-connected graph on $n \ge 3$ vertices. If for every $uv \notin E(G)$, $\max\{d_G(u), d_G(v)\} \ge n/2$, then $G \in M_3^o$ if and only if G is not contractible to one of 22 exceptional graphs.

- Theorem (X. Li et al., DM 2012) Let G be a simple 2-edge-connected graph on $n \ge 3$ vertices. If for every $uv \notin E(G)$, $\max\{d_G(u), d_G(v)\} \ge n/2$, then $G \in M_3^o$ if and only if G is not contractible to one of 22 exceptional graphs.
- Theorem (J. Yan, EJC 2013) Let G be a 2-edge-connected graph of order n such that each pair of vertices x and y at distance 2 satisfies max{d_G(x), d_G(y)} > ⁿ/₂, then either G is strongly Z₃-connected or, with only one exception, G belongs to a family of non strongly Z₃-connected graphs related to the "odd-wheel and fan" family defined in [J. Combin. Theory Ser. B 98 (2008) 1325-1336].

problems/degree conditions

Observations The theorems above have the following in common (for s = 1): under certain degree conditions, either these graphs are strongly \mathbb{Z}_{2s+1} -connected, or they can be contracted into a family of finitely many non strongly \mathbb{Z}_{2s+1} -connected graphs, or, in some cases, the independence number of the exceptional graphs is unbounded.

- Observations The theorems above have the following in common (for s = 1): under certain degree conditions, either these graphs are strongly \mathbb{Z}_{2s+1} -connected, or they can be contracted into a family of finitely many non strongly \mathbb{Z}_{2s+1} -connected graphs, or, in some cases, the independence number of the exceptional graphs is unbounded.
- Next Question: The results above are on strongly \mathbb{Z}_3 -connected graphs. Can the same be done for strongly \mathbb{Z}_{2s+1} -connected graphs with $s \ge 2$?

- Observations The theorems above have the following in common (for s = 1): under certain degree conditions, either these graphs are strongly \mathbb{Z}_{2s+1} -connected, or they can be contracted into a family of finitely many non strongly \mathbb{Z}_{2s+1} -connected graphs, or, in some cases, the independence number of the exceptional graphs is unbounded.
- Next Question: The results above are on strongly \mathbb{Z}_3 -connected graphs. Can the same be done for strongly \mathbb{Z}_{2s+1} -connected graphs with $s \ge 2$?
- Next Question: Can the same structural properties be preserved if we replace the lower bounds in the theorems above by an arbitrary non-trivial linear function of n, the number of vertices of the graph?

problems/degree conditions

Theorem (P.Li and HJL, SIDAM 2014) Let *G* be a simple graph on *n* vertices. For any integers s > 0 and for any real numbers α and β with $0 < \alpha < 1$, there exist an integer $N = N(\alpha, s)$ and a finite family $\mathcal{F}(\alpha, s)$ of graphs not in M_{2s+1}^o such that if $n \ge N$ and if for every pair of nonadjacent vertices *u* and *v* in *G*, $d_G(u) + d_G(v) \ge \alpha n + \beta$ then either *G* is strongly \mathbb{Z}_{2s+1} -connected or *G* can be contracted to a member in $\mathcal{F}(\alpha, s)$.

- Theorem (P.Li and HJL, SIDAM 2014) Let *G* be a simple graph on *n* vertices. For any integers s > 0 and for any real numbers α and β with $0 < \alpha < 1$, there exist an integer $N = N(\alpha, s)$ and a finite family $\mathcal{F}(\alpha, s)$ of graphs not in M_{2s+1}^o such that if $n \ge N$ and if for every pair of nonadjacent vertices *u* and *v* in *G*, $d_G(u) + d_G(v) \ge \alpha n + \beta$ then either *G* is strongly \mathbb{Z}_{2s+1} -connected or *G* can be contracted to a member in $\mathcal{F}(\alpha, s)$.
- Problem This is the first attempt in this direction, and is an Ore-Type condition. How about other degree conditions?

problems/degree conditions

■ Observation. If for any $uv \notin E(G)$, $d_G(u) + d_G(v) \ge f(n)$ then $\max\{d_G(u), d_G(v)\} \ge \frac{f(n)}{2}$. This motivates the following study.

problems/degree conditions

- Observation. If for any $uv \notin E(G)$, $d_G(u) + d_G(v) \ge f(n)$ then $\max\{d_G(u), d_G(v)\} \ge \frac{f(n)}{2}$. This motivates the following study.
- Theorem (A. Yu, M. Han, J. Liu, HJL, DM 2017) For any integer s > 0 and real numbers a, b with 0 < a < 1, there exist an integer N = N(a, b, s) and a finite family $\mathcal{J}_0(a, s)$ of non-strongly \mathbb{Z}_{2s+1} -connected graphs such that for any connected simple graph G with order $n \ge N$, if

for any $uv \notin E(G)$, $\max\{d_G(u), d_G(v)\} \ge an+b$,

then *G* is strongly \mathbb{Z}_{2s+1} -connected if and only if *G* cannot be contracted to a member in $\mathcal{J}_0(a, s)$.

problems/degree conditions

For any integer n and s, define $f_1(n, s) = \max\{|E(G)| : G \text{ is simple, } |V(G)| = n \text{ and } G \notin M_{2s+1}^o \text{ but for any } e \in E(G),$ $G/e \in M_{2s+1}^o\}$ and

- For any integer n and s, define $f_1(n, s) = \max\{|E(G)| : G \text{ is simple, } |V(G)| = n \text{ and } G \notin M_{2s+1}^o \text{ but for any } e \in E(G),$ $G/e \in M_{2s+1}^o\}$ and
- $f_2(n,s) = \max\{|E(G)| : G \text{ is simple, } |V(G)| = n \text{ and}$ $G \notin M^o_{2s+1}$ but for any $e \in E(G^c)$, $G + e \in M^o_{2s+1}\}$

problems/degree conditions

- For any integer n and s, define $f_1(n, s) = \max\{|E(G)| : G \text{ is simple, } |V(G)| = n \text{ and } G \notin M_{2s+1}^o \text{ but for any } e \in E(G),$ $G/e \in M_{2s+1}^o\}$ and
- $f_2(n,s) = \max\{|E(G)| : G \text{ is simple, } |V(G)| = n \text{ and}$ $G \notin M^o_{2s+1}$ but for any $e \in E(G^c)$, $G + e \in M^o_{2s+1}\}$

Problem Determine $f_1(n,s)$ and $f_2(n,s)$.

Thank You