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Background

In multiprocessor systems, the systems always contain a large
number of processors. Some processors may fail when a
system is in put into use. It is important to identify the faulty
processors. The process of identifying the faulty processors is
called the diagnosis of the system.
The maximal number of faulty processors that a system can
guarantee to diagnosis is called the degree of diagnosability of
the system.
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Background

The t/t-diagnosable system is called the pessimistic
diagnosis strategy, which is proposed by Kavianpour and
Friedman.
In the pessimistic diagnosis strategy, all the faulty vertices can
be isolated into a faulty set with at most one fault-free vertex
may be contained in the faulty set.
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Definitions

pessimistic diagnosability
The pessimistic diagnosability, denoted by tp(G), of a
systems G, is the maximal number of faulty processors so
that the system G is t/t-diagnosable.
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theorem A

The following theorem is a sufficient and necessary for a graph
G to be t/t-diagnosable.

Theorem (C.-H. Tsai, J.-C. Chen, Theor. Comput. Sci. 501
(2013), pp. 62-71.)

A graph G is t/t-diagnosable if and only if for each vertex set
S ⊆ V (G) with |S| = p, 0 ≤ p ≤ t − 1, G − S has at most one
trivial component and each nontrivial component C of G − S
satisfies |V (C)| ≥ 2(t − p) + 1.
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Definitions

For any two vertices u and v in a graph G, the number of
common neighbors of u and v is denoted by CG(u, v), i.e.,
CG(u, v) = |NG(u) ∩ NG(v)|.
The distance between u and v in G, denoted by dG(u, v), is
the length of a shortest path between them.
The girth of a graph G is the the length of the shortest cycle in
G.
The components of a graph G are the maximally connected
subgraphs.
A component is trivial if it is one vertex, otherwise it is
nontrivial.
The connectivity of a graph G, denoted by κ(G), is the
minimum number of vertices whose removal will result a
disconnected or a trivial graph.
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Main result

Theorem
In a simple graph G = (V (G),E(G)), let n0 be the minimum
cardinality of the neighborhoods of any two adjacent vertices,
i.e., n0 = min{|NG({u, v})|

∣∣(u, v) ∈ E(G)}. Let κ(G) be the
connectivity of G. The pessimistic diagnosability of G is

tp(G) = n0

if the following two conditions hold:
(1) For any subset U ⊂ V (G) with 2 ≤ |U| ≤ 2(n0 − κ(G)),
|NG(U)| ≥ n0;
(2) |V (G)| ≥ 2n0 + κ(G).
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Sketch of proof

We first prove that tp(G) ≤ n0.
The proof is by contradiction. Assume that tp(G) ≥ n0 + 1. Let
e = (u, v), H = {u, v} and S = NG(H) such that
|S| = |NG(H)| = n0 ≤ tp(G)− 1. Since H induces an edge
which is a nontrivial component of G − S, by Theorem A,
|H| ≥ 2[tp(G)− |S|] + 1 = 2[tp(G)− n0] + 1 ≥ 2 + 1 = 3.
However, |H| = |{u, v}| = 2. That is a contradiction. Hence,
tp(G) ≤ n0.
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Sketch of proof

Now we prove that tg(G) ≥ n0.
We consider the following two cases.
Case 1. G − S contains more than one trivial components.
Case 2. G − S contains a nontrivial component C with
|V (C)| ≤ 2(n0 − p).
Case 2.1. 0 ≤ p ≤ κ(G)− 1.
Case 2.2. κ(G) ≤ p ≤ n0 − 1.
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lemma A

Lemma (J. Fan, IEEE Trans. Parallel Distrib. Syst. 40 (1)
(1991), pp. 88-93.)
Let G be a connected graph and U ⊂ V (G). Then
|NV (G)−U(U)| ≥ κ(G) if |V (G)− U| ≥ κ(G), otherwise,
|NV (G)−U | = |V (G)− U|.
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Application to hypercube-like networks

Definition (A. S. Vaidya, P.S.N. Rao, S.R. Shankar, In Proc.
5th IEEE Symp. Parallel Distrib. Process. 1993, PP.
800-803.)
An n-dimensional hypercube-like networks, denoted by XQn, is
constructed by recursive method.
XQ1 = K1.
XQn is constructed by two copies of XQn−1, denoted by XQ0

n−1
and XQ1

n−1, and by adding some perfect matchings between
XQ0

n−1 and XQ1
n−1.
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Application to hypercube-like networks

Lemma ([6, 26])
(1) V (XQn) = 2n. (2) κ(XQn) = n.

Lemma ([8])

For U ⊂ V (XQn), if |U| = k, 1 ≤ k ≤ n + 1, n ≥ 1, then
|NXQn(U)| ≥ kn − k(k + 1)/2 + 1.

Lemma

For any edge e = (u, v) of XQn, |NXQn({u, v})| = 2n − 2, where
n ≥ 2.
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Application to hypercube-like networks

Lemma ([29])

For U ⊂ V (XQn) with 3 ≤ |U| ≤ 2n − 2n − 1, then
|NXQn(U)| > 2n − 2, where n ≥ 5.

Lemma

For U ⊂ V (XQn) with 2 ≤ |U| ≤ 2n − 2, then
|NXQn(U)| ≥ 2n − 2, where n ≥ 4.

Lemma

|V (XQn)| ≥ 2(2n − 2) + n, where n ≥ 4.
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Application to hypercube-like networks

Theorem
tp(XQn) = 2n − 2, where n ≥ 4.
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Application to dual-cube

Definition ([3])

DCn consists of 2n+1 copies of Qn with two classes, named
Class 0 and Class 1. Each class consists of 2n copies of Qn
and each copy is called a cluster. Each vertex is labeled by
u2nu2n−1u2n−2 . . . unun−1 . . . u0 with u2n−1u2n−2 . . . un is cluster
id and un−1un−2 . . . u0 is vertex id. If u2n = 0, then it is in Class
0; if u2n = 1, then it is in Class 1. Two vertices
u = u2nu2n−1 . . . u0 and v = v2nv2n−1 . . . v0 are adjacent if and
only if the following conditions hold:
(1) u and v differ in exactly one bit position i , where 0 ≤ i ≤ 2n;
(2) if 0 ≤ i ≤ n − 1, then u2n = v2n = 0;
(3) if n ≤ i ≤ 2n − 1, then u2n = v2n = 1.
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Application to dual-cube
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Fig.: The illustration of DC2.
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Application to dual-cube

Lemma ([15, 16, 17])

(1) DCn has 22n+1 vertices.
(2) DCn is (n + 1)-regular graph.
(3) κ(DCn) = n + 1.

Lemma ([28])

For any two distinct vertices u and v in n-dimensional
dual-cube DCn, if d(u, v) = 2 then C(u, v) ≤ 2, otherwise if
d(u, v) = 1 or d(u, v) ≥ 3, then C(u, v) = 0.

Lemma

For any edge e = (u, v) of DCn, |NDCn({u, v})| = 2n, where
n ≥ 2.
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Application to dual-cube

Lemma

For any two vertices u and v in DCn, |NDCn({u, v})| ≥ 2n.

Lemma

Let U ⊂ V (DCn) with 2 ≤ |U| ≤ 2n − 2. Then |NDCn(U)| ≥ 2n,
where n ≥ 4.

Lemma

|V (DCn)| > 2 · 2n + (n + 1), where n ≥ 4.
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Application to dual-cube

Theorem
tp(DCn) = 2n, where n ≥ 4.
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Application to pancake graph

Definition ([22])

An n-dimensional pancake graph is denoted by
Pn = (V (Pn),E(Pn)), where V (Pn) is the set of all permutations
of 〈n〉, where 〈n〉 = {1,2, . . . ,n}, and the edge set
E(Pn) = {(u, (u)i)|u = u1 . . . ui . . . un, (u)i =
uiui−1 . . . u2u1ui+1 . . . un,2 ≤ i ≤ n}.
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Application to pancake graph
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Fig.: Illustrations of P2, P3 and P4.
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Application to pancake graph

Lemma ([1, 13, 18, 23])

(1) Pn is (n − 1)-regular with n! nodes.
(2) κ(Pn) = n − 1.
(3) The girth of Pn is 6, where n ≥ 3.
(4) Pn can be decomposed into n vertex-disjoint subgraphs,
denoted by P i

n, by fixing the symbol in the last position n, in
which the symbol in the nth position is i, where i ∈ 〈n〉. P i

n is
isomorphic to Pn−1.
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Application to pancake graph

Lemma

Let u and v be any two vertices in Pn with n ≥ 3. If d(u, v) = 2,
then C(u, v) = 1, otherwise, if d(u, v) = 1 or d(u, v) ≥ 3, then
C(u, v) = 0.

Lemma

For any edge e = (u, v) of Pn, |NPn({u, v})| = 2n − 4, where
n ≥ 3.

Lemma

Let u and v be any two vertices in Pn. Then
|NPn({u, v})| ≥ 2n − 4, where n ≥ 3.
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Application to pancake graph

Lemma

|V (Pn)| > 2(2n − 4) + (n − 1), where n ≥ 4.

Lemma

For any subset U ⊂ V (Pn) with 2 ≤ |U| ≤ 2n − 6, then
|NPn(U)| ≥ 2n − 4, where n ≥ 4.
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Application to pancake graph

Theorem

tp(Pn) = 2n − 4, where n ≥ 4.
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Application to burnt pancake network

Definition ([4])

An n-dimensional burnt pancake network is denoted by
BPn = (V (BPn),E(BPn)), where V (BPn) is the set of all signed
permutations of 〈n〉, and the edge set is
E(BPn) = {(u, (u)

i
)|u = u1 . . . ui . . . un, (u)

i
=

uiui−1 . . . u2u1ui+1 . . . un,1 ≤ i ≤ n}.
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Application to burnt pancake network
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Fig.: Illustrations of BP1, BP2 and BP3.
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Application to burnt pancake network

Lemma ([4, 12])

(1) BPn is n-regular with n!× 2n nodes.
(2) κ(BPn) = n.
(3) The girth of BPn is 8, where n ≥ 2.
(4) BPn can be decomposed into 2n vertex-disjoint subgraphs,
denoted by BP i

n, by fixing the symbol in the last position n, in
which the symbol in the nth position is i, where i ∈ 〈n〉. BH i

n is
isomorphic to BPn−1.



Introduction References

Application to burnt pancake network

Lemma

For any two vertices u and v in BPn, if d(u, v) = 2, then
C(u, v) = 1, otherwise if d(u, v) = 1 or d(u, v) ≥ 3, then
C(u, v) = 0.

Lemma

For any edge e = (u, v) in BPn, |NBPn({u, v})| = 2n − 2, where
n ≥ 2.

Lemma

For any two vertices u and v in BPn, |NBPn({u, v})| ≥ 2n − 2,
where n ≥ 2.
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Application to burnt pancake network

Lemma

Let U ⊂ V (BPn) with 2 ≤ |U| ≤ 2n − 4. Then
|NBPn(U)| ≥ 2n − 2, where n ≥ 3.

Lemma

|V (BPn)| > 2(2n − 2) + n, where n ≥ 3.
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Application to burnt pancake network

Theorem
tn(BPn) = 2n − 2, where n ≥ 3.
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Concluding remarks

Table: Applications of main theorem

G V (G) n0 κ(G) tp(G)

XQn 2n 2n − 2 2n − 2 2n − 2
DCn 22n+1 2n n + 1 2n
Pn n! 2n − 4 n − 1 2n − 4

BPn n!× 2n 2n − 2 n 2n − 2
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