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is a degree sequence d such that any G ∈ (d) must have property P .

Let d = (d1, d2, ..., dn) be a graphic sequence with d1 ≥ d2 ≥ ... ≥ dn and n ≥ 3.

Theorem (Chvatal, JCTB 1972) If for any 1 ≤ i ≤ n/2, we have di ≥ i or
dn−i ≥ n− i+ 1, then G is hamiltonian.

Theorem (Bollobas, DM 1979) If for any 1 ≤ i ≤ min{n/2− 1, dn},
∑i

j=1(di + dn−i) ≥ in− 1, then κ′(G) = δ(G) = dn.
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Theorem (Kuhn, Osthus, and Tregrown, 2010) For any a η > 0, there exists an
integer n0 = n0(η) such that every digraph D is hamiltonian provided it satisfies
that for any 1 ≤ i ≤ n/2, either (i) d+i ≥ i+ ηn or d−n−i−ηn ≥ n− i, or (ii)

d−i ≥ i+ ηn or d+n−i−ηn ≥ n− i, then D is hamiltonian.

There are quite a few other forcible degree sequence results/problems.

Open Problem. Characterize forcible sequences for hamiltonian graphs.

Open Problem. Characterize forcible sequences for k-connected
(k-edge-connected) graphs.
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Problem An n processor network has n processors v1, v2, ..., vn such that each
vi has a given number di of connections. It is expected to design such a network
so that it has a certain level of strength or reliability.

This amounts to the following: given a graphic sequence d and a graphical
property P , is there a d realization satisfying P?

A potential degree sequence for a graphical property P (or a potential
P -sequence) is a degree sequence d such that there exists one G ∈ (d) that has
property P .
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Degree Sequences Realization Problem

Unlike forcible sequences, for the potential P -sequence problem, we seek only
one d-realization that has the property P .

Common problem. Characterize potential P -sequences.

Find necessary and/or sufficient conditions on d for d to be a potential
P -sequence.

Major Tool: Given G ∈ (d), do
(i) Find a matching e1, e2 ∈ E(G) and a matching f1, f2 in Gc such that
e1, e2, f1, f2 form a 4-cycle in Kn.
(ii) Switching: G′ := G− {e1, e2}+ {f1, f2} ∈ (d).
(iii) Compare to see if G′ is more favorable than G.
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Spanning Trees Packing and Covering

spanning tree T of G: connected acyclic subgraph of G which contains every
vertex of G.

|E(T )| = |V (G)| − 1 = n− 1

T1 and T2 are edge-disjoint spanning trees of G if both T1 and T2 are spanning
trees of G satisfying E(T1) ∩ E(T2) = ∅.

Problem. For a given integer k > 0, can we characterize graphic sequences
d = (d1, d2, · · · , dn) which has a realization with k-edge-disjoint spanning trees?
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Spanning Trees Packing and Covering

ω(H): = number of connected components of H.

τ(G): = maximum number of edge-disjoint spanning trees of G

Problem. Characterize potential sequences for τ(G) ≥ k.

Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected
graph G, τ(G) ≥ k if and only if ∀X ⊆ E(G), |X| ≥ k(ω(G−X)− 1).
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Spanning Trees Packing and Covering

Theorem (Liang, Li, HJL DAM 2010) Let d = (d1, · · · , dn) be a nonincreasing
graphic sequence. Then d has a realization G with τ(G) ≥ k if and only if either
n = 1 and d1 = 0 or n > 1 and each of the following statements holds
(i) dn ≥ k, and

(ii)
n
∑

i=1

di ≥ 2k(n− 1).
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n
∑

i=1

di = 2|E(G)|

≥ 2|E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk)|

= 2k(n− 1).

Proving the sufficiency is more involved.
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a1(G): = minimum number of spanning trees of G whose union covers E(G).

Theorem (Nash-Williams [J. London Math. Soc. (1964)]) For a connected graph G,
a1(G) ≤ k if and only if ∀X ⊆ E(G), |X| ≤ k(|V (G[X]))− ω(G[X])).
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a1(G): = minimum number of spanning trees of G whose union covers E(G).

Theorem (Nash-Williams [J. London Math. Soc. (1964)]) For a connected graph G,
a1(G) ≤ k if and only if ∀X ⊆ E(G), |X| ≤ k(|V (G[X]))− ω(G[X])).

Theorem (Liu, Zhang, Zhang and HJL, DAM 2015) Let k2 ≥ k1 ≥ 0 and n > 1 be
integers. Let d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a graphic sequence
and let I = {i : di < k2}. Then there exists a graph G ∈ (d) such that
k2 ≥ a(G) ≥ τ(G) ≥ k1 if and only if each of the following holds.
(i) dn ≥ k1.
(ii) 2k2(n− |I| − 1) + 2

∑

i∈I di ≥
∑n

i=1 di ≥ 2k1(n− 1).
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Spanning Trees Packing and Covering

Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let n ≥ 2 and k > 0 be
integers. For a graphic sequence d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn,
the following are equivalent.
(i) There exists a d-realization G such that a(G) ≤ k.
(ii)
∑n

i=1 di ≤ 2k(n− |I| − 1) + 2
∑

i∈I di, where I = {i : di < k}.
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Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let n ≥ 2 and k > 0 be
integers. For a graphic sequence d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn,
the following are equivalent.
(i) There exists a d-realization G such that a(G) ≤ k.
(ii)
∑n

i=1 di ≤ 2k(n− |I| − 1) + 2
∑

i∈I di, where I = {i : di < k}.

Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let n ≥ 2 and k > 0 be
integers. For a graphic sequence d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn,
there exists G ∈ (d) such that a(G) = τ(G) = k if and only if dn ≥ k and
∑n

i=1 di = 2k(n− 1).

Open Problem: What are the forcible degree sequence condition for Spanning
Trees Packing and Covering?
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Supereulerian and line-hamiltonian

Realizations

O(G): = set of odd degree vertices.

G is eulerian if G is connected with O(G) = ∅.

A graph G is supereulerian if G contains a spanning eulerian subgraphs.

Problem. Can we characterize graphic sequences d = (d1, d2, · · · , dn) which has
a supereulerian realization?

Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a graphic sequence. Then the
following are equivalent.
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A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.

Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a graphic sequence. Then the
following are equivalent.

(i) There exists a graph G ∈ (d) such that G is line-hamiltonian.
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Supereulerian and line-hamiltonian

Realizations
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Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a graphic sequence. Then the
following are equivalent.

(i) There exists a graph G ∈ (d) such that G is line-hamiltonian.

(ii) Either d1 = n− 1, or
∑

di=1 di ≤
∑

dj≥2(dj − 2).

Open Problem. Find forcible degree sequence conditions for being supereulerian.

Open Problem. Find forcible degree sequence conditions for being
line-hamiltonian.

Open Problem. Find forcible/potential degree sequences for other hamiltonian
properties of line graphs.
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Realizations
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realization if and only if either n− 1, or n ≥ 2 and dn ≥ 2.
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Super edge-connected graphs

A graph G is super edge-connected if every minimum edge-cut isolates a vertex of
G.
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Super edge-connected graphs

A graph G is super edge-connected if every minimum edge-cut isolates a vertex of
G.

Example. A (simple) cycle Cn is super edge-connected if and only if n = 3.

Problem. Characterize potential sequences for super edge-connectedness.

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let d = (d1, d2, · · · , dn)

with d1 ≥ d2 ≥ · · · ≥ dn = 1 be a graphic sequence. Then there exists a graph
G ∈ (d) such that G is super edge-connected if and only if one of the following
holds.
(i) d1 = n− 1 and

∑n
i=1 di = 2(n− 1), or

(ii)
∑n

i=1 di ≥ 2.
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Super edge-connected graphs

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer
and d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · dn−t > dn−t+1 = · · · = dn = 2 be a
graphic sequence. Then each of the following holds.
(i) If t = n, then there exists a graph G ∈ (d) such that G is super edge-connected
if and only if n = 3.
(ii) If t < n, then there exists a graph G ∈ (d) such that G is super edge-connected

if and only if both
n−t
∑

i=1

di ≥
n
∑

i=n−t+1

di = 2t and d1 ≤
1

2

(

n−t
∑

i=1

di

)

.
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Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.
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∑
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di = 2t and d1 ≤
1

2

(

n−t
∑

i=1

di

)

.

Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.

If t < n, then {vn−t+1, ..., vn} is an independent set and so
n−t
∑

i=1

di ≥
n
∑

i=n−t+1

di = 2t. As 2|E(G− {vn−t+1, ..., vn})| =
n−t
∑

i=1

di − 2t, we have

d1 ≤ t+ 1
2

(

∑n−t
i=1 di − 2t

)
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Super edge-connected graphs

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer
and d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · dn−t > dn−t+1 = · · · = dn = 2 be a
graphic sequence. Then each of the following holds.
(i) If t = n, then there exists a graph G ∈ (d) such that G is super edge-connected
if and only if n = 3.
(ii) If t < n, then there exists a graph G ∈ (d) such that G is super edge-connected

if and only if both
n−t
∑

i=1

di ≥
n
∑

i=n−t+1

di = 2t and d1 ≤
1

2

(

n−t
∑

i=1

di

)

.

Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.

If t < n, then {vn−t+1, ..., vn} is an independent set and so
n−t
∑

i=1

di ≥
n
∑

i=n−t+1

di = 2t. As 2|E(G− {vn−t+1, ..., vn})| =
n−t
∑

i=1

di − 2t, we have

d1 ≤ t+ 1
2

(

∑n−t
i=1 di − 2t

)

.

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Every graphic sequence
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn ≥ 3 has a super edge-connected
realization.
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Nowhere-zero Flows and Modulo Orientation

Realizations

Definition Given an integer k > 0 and a graph G with a fixed orientation D. A
function f : E(G) → Zk − {0} is a nowhere-zero Zk-flow if at every vertex v, the
flow-in amount amount at v equals to the flow-out amount amount at v under f .
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function f : E(G) → Zk − {0} is a nowhere-zero Zk-flow if at every vertex v, the
flow-in amount amount at v equals to the flow-out amount amount at v under f .

Problem Characterize forcible/potential degree sequences for the existence of a
nowhere-zero Zk-flow.

Theorem (R. Luo, W. Zang, and CQ Zhang, Combinatorica 2004) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a bipartite graphic sequence.
Then d has a bipartite realization that has a nowhere-zero 4-flow if and only if
dn ≥ 2.
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Theorem (F. Jaeger, 1978) Every supereulerian graph has a nowhere-zero
Z4-flow.

– p. 21/30



Nowhere-zero Flows and Modulo Orientation

Realizations

Definition Given an integer k > 0 and a graph G with a fixed orientation D. A
function f : E(G) → Zk − {0} is a nowhere-zero Zk-flow if at every vertex v, the
flow-in amount amount at v equals to the flow-out amount amount at v under f .

Problem Characterize forcible/potential degree sequences for the existence of a
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Theorem (R. Luo, W. Zang, and CQ Zhang, Combinatorica 2004) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a bipartite graphic sequence.
Then d has a bipartite realization that has a nowhere-zero 4-flow if and only if
dn ≥ 2.

Theorem (F. Jaeger, 1978) Every supereulerian graph has a nowhere-zero
Z4-flow.

Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let
d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn be a graphic sequence. Then d has
a realization that has a nowhere-zero Z4-flow if and only if dn ≥ 2.
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Highly edge-connected hypergraph

realizations

An integral sequence d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn is
hypergraphic if there exists a hypergraph H with d as a degree sequence.
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Highly edge-connected hypergraph

realizations

An integral sequence d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ · · · ≥ dn is
hypergraphic if there exists a hypergraph H with d as a degree sequence.

A hypergraph H is r-uniform if every (hyper)edge of H has r vertices.

A hypergraph H is k-edge-connected if every for any partition V1 and V2 of V (H)

into nonempty sets, there are at least k (hyper)edge of H intersecting both V1 and
V2.

Problem. Characterize forcible/potential hypergraphic sequence for
k-edge-connectedness.
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Highly edge-connected hypergraph

realizations

Theorem (Edmonds 1964) A graphic sequence d = (d1, d2, · · · , dn) has a
k-edge-connected realization if and only if
(i) di ≥ k for i = 1, 2, · · · , n;
(ii)
∑n

i=1 di ≥ 2(n− 1) if k = 1.
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Theorem (Boonyasombat, 1984) An r-uniform hypergraphic sequence
d = (d1, d2, · · · , dn) has a connected realization if and only if
(i) di ≥ 1 for i = 1, 2, · · · , n;
(ii)
∑n

i=1 di ≥
r(n−1)
r−1

.

Theorem (X. Gu and HJL, DM 2013) An r-uniform hypergraphic sequence
d = (d1, d2, · · · , dn) has a k-edge-connected realization if and only if
(i) di ≥ k for i = 1, 2, · · · , n;
(ii)
∑n

i=1 di ≥
r(n−1)
r−1

if k = 1.
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Highly edge-connected hypergraph

realizations

Theorem (Tusyadej, 1989) A nonincreasing integer sequence
d = (d1, d2, · · · , dn) is the degree sequence of a connected r-uniform hypergraph
(possibly with multiple edges) if and only if each of the following holds
(i)
∑n

i=1 di is a multiple of r;
(ii) dn ≥ 1; and
(iii)
∑n

i=1 di ≥ max{ r(n−1)
r−1

, rd1}.
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Theorem (X. Gu and HJL, DM 2013) A nonincreasing integer sequence
d = (d1, d2, · · · , dn) is the degree sequence of a k-edge-connected r-uniform
hypergraph (possibly with multiple edges) if and only if each of the following holds
(i)
∑n
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Strong digraph realizations
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Strong digraph realizations

A sequence of of non-negative integers pairs d = {(d+1 , d−1 ), . . . , (d+n , d−n )} is
(strict) digraphic if there exists a (strict) digraph D with

V (D) = {v1, v2, · · · , vn} satisfying

d+
D
(vi) = d+i and d−

D
(vi) = d−i for each i

Theorem (Fulkerson (1960)-Ryser (1963)) Let d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a
sequence of non-negative integer pairs with d+1 ≥ . . . ≥ d+n . Then d is strict
digraphic if and only if each of the following holds:
(i) d+i ≤ n− 1, d−i ≤ n− 1 for all 1 ≤ i ≤ n;
(ii)
∑n

i=1 d
+
i =

∑n
i=1 d

−
i ;

(iii)
∑k

i=1 d
+
i ≤

∑k
i=1 min{k − 1, d−i }+

∑n
i=k+1 min{k, d−i } for all 1 ≤ k ≤ n.
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Strong digraph realizations

Theorem. (Beineke and Harary, JLM Soc. 1966) Let
d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a digraphic sequence. The following are
equivalent.
(i) There exists a strict strong digraph D.
(ii) For any i with 1 ≤ i ≤ n, both d+i > 0 and d−i > 0, and either for each k with

1 ≤ k < n,
∑k

i=1 d
+
i <

∑k
i=1 d

−
i +

∑n
j=k+1 min{k, d−j }, or for each k with

1 ≤ k < n,
∑k

i=1 d
−
i <

∑k
i=1 d

+
i +

∑n
j=k+1 min{k, d+j },
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d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a digraphic sequence. The following are
equivalent.
(i) There exists a strict strong digraph D.
(ii) For any i with 1 ≤ i ≤ n, both d+i > 0 and d−i > 0, and either for each k with

1 ≤ k < n,
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i=1 d
−
i <

∑k
i=1 d

+
i +

∑n
j=k+1 min{k, d+j },

Open Problem. Characterize forcible digraphic sequences for strong
connectedness.

– p. 26/30



Strong digraph realizations

Theorem. (Beineke and Harary, JLM Soc. 1966) Let
d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a digraphic sequence. The following are
equivalent.
(i) There exists a strict strong digraph D.
(ii) For any i with 1 ≤ i ≤ n, both d+i > 0 and d−i > 0, and either for each k with

1 ≤ k < n,
∑k

i=1 d
+
i <

∑k
i=1 d

−
i +

∑n
j=k+1 min{k, d−j }, or for each k with

1 ≤ k < n,
∑k

i=1 d
−
i <

∑k
i=1 d

+
i +

∑n
j=k+1 min{k, d+j },

Open Problem. Characterize forcible digraphic sequences for strong
connectedness.

Open Problem. For k > 1, characterize forcible digraphic sequences for strong
k-connectedness (arc k-connectedness).
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Strong digraph realizations

Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a
sequence of non-negative integer pairs. Then d is multi-digraphic if and only if
each of the following holds:
(i)
∑n

i=1 d
+
i =

∑n
i=1 d

−
i ;

(ii) for k = 1, . . . , n, d+
k

≤
∑

i 6=k d−i .
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Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a
sequence of non-negative integer pairs. Then d is multi-digraphic if and only if
each of the following holds:
(i)
∑n

i=1 d
+
i =

∑n
i=1 d

−
i ;

(ii) for k = 1, . . . , n, d+
k

≤
∑

i 6=k d−i .

For given a (strict) digraphic sequence d = {(d+1 , d−1 ), . . . , (d+n , d−n )} with
d+1 ≥ . . . ≥ d+n , and for any k with 1 ≤ k ≤ n, define

f(k) =
k
∑

i=1

(d−i − d+i ) +
n
∑

i=k+1

min{k, d−i }.
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Strong digraph realizations

Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let d = {(d+1 , d−1 ), . . . , (d+n , d−n )} be a
sequence of non-negative integer pairs. Then d is multi-digraphic if and only if
each of the following holds:
(i)
∑n

i=1 d
+
i =

∑n
i=1 d

−
i ;

(ii) for k = 1, . . . , n, d+
k

≤
∑

i 6=k d−i .

For given a (strict) digraphic sequence d = {(d+1 , d−1 ), . . . , (d+n , d−n )} with
d+1 ≥ . . . ≥ d+n , and for any k with 1 ≤ k ≤ n, define

f(k) =
k
∑

i=1

(d−i − d+i ) +
n
∑

i=k+1

min{k, d−i }.

Theorem (Y. Hong, Q. Liu, HJL JGT 2017) d has a strong strict d-realization if and
only if both of the following hold.
(i) d+i ≥ 1, d−i ≥ 1 for all 1 ≤ i ≤ n;
(ii) f(k) ≥ 1 for all 1 ≤ k ≤ n− 1.
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Future Problems

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
planar.
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i=1 di ≤ 6n− 12 is a necessary condition.

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
K3-free and planar.
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Future Problems

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
planar.

It is known that
∑n

i=1 di ≤ 6n− 12 is a necessary condition.

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
K3-free and planar.

It is known that
∑n

i=1 di ≤ 4n− 8 is a necessary condition.
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Future Problems

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
planar.

It is known that
∑n

i=1 di ≤ 6n− 12 is a necessary condition.

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
K3-free and planar.

It is known that
∑n

i=1 di ≤ 4n− 8 is a necessary condition.

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with
∆(Ti) ≤ ⌈∆(G)/k⌉?
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Future Problems

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
planar.

It is known that
∑n

i=1 di ≤ 6n− 12 is a necessary condition.

Problem. Find forcible/feasible degree sequence conditions for a graph G to be
K3-free and planar.

It is known that
∑n

i=1 di ≤ 4n− 8 is a necessary condition.

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with
∆(Ti) ≤ ⌈∆(G)/k⌉?

Related Problem. For any given integer k > 0, is there an integer f1(k) such that
every graph G with τ(G) ≥ f1(k) has k edge-disjoint spanning trees
T1, T2, · · · , Tk such that ∆(Ti) ≤ ⌈∆(G)/k⌉?
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Future Problems

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with the property
that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?
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Future Problems

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with the property
that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?

Related Problem. For any given integer k > 0, is there an integer f2(k) such that
every graph G with τ(G) ≥ f2(k) has k edge-disjoint spanning trees
T1, T2, · · · , Tk such that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?
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Future Problems

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with the property
that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?

Related Problem. For any given integer k > 0, is there an integer f2(k) such that
every graph G with τ(G) ≥ f2(k) has k edge-disjoint spanning trees
T1, T2, · · · , Tk such that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?

Problem. For any given integer k > 0, and constant c > 0, determine conditions
for a degree sequence d to have a realization G such that G has k edge-disjoint
spanning trees T1, T2, · · · , Tk with diameter(Ti) ≤ diameter(G) + c?
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Future Problems

Problem. Determine conditions for a degree sequence d to have a realization G

such that G has k edge-disjoint spanning trees T1, T2, · · · , Tk with the property
that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?

Related Problem. For any given integer k > 0, is there an integer f2(k) such that
every graph G with τ(G) ≥ f2(k) has k edge-disjoint spanning trees
T1, T2, · · · , Tk such that for any v ∈ V (G), dTi

(v) ≤ ⌈dG(v)/k⌉?

Problem. For any given integer k > 0, and constant c > 0, determine conditions
for a degree sequence d to have a realization G such that G has k edge-disjoint
spanning trees T1, T2, · · · , Tk with diameter(Ti) ≤ diameter(G) + c?

Related Problem. For any given integer k > 0, and constant c > 0, is there an
integer f3(k, c) such that every graph G with τ(G) ≥ f3(k, c) has k edge-disjoint
spanning trees T1, T2, · · · , Tk such that diameter(Ti) ≤ diameter(G) + c?
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Thank you!
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