The Degree Sequence Related Problems

Hong-Jian Lai

West Virginia University

Degree Sequence and The Problem

- Degree Sequence and The Problem
- Forcible Sequences

- Degree Sequence and The Problem
- Forcible Sequences
- Potential Sequences: Spanning Tree Packing and Covering

- Degree Sequence and The Problem
- Forcible Sequences
- Potential Sequences: Spanning Tree Packing and Covering
- Potential Sequences: Supereulerian and line-hamiltonian Realizations

- Degree Sequence and The Problem
- Forcible Sequences
- Potential Sequences: Spanning Tree Packing and Covering
- Potential Sequences: Supereulerian and line-hamiltonian Realizations
- Potential Sequences: Super Edge-connected Realizations

- Degree Sequence and The Problem
- Forcible Sequences
- Potential Sequences: Spanning Tree Packing and Covering
- Potential Sequences: Supereulerian and line-hamiltonian Realizations
- Potential Sequences: Super Edge-connected Realizations
- Potential Sequences: Highly edge-connected hypergraph realizations

- Degree Sequence and The Problem
- Forcible Sequences
- Potential Sequences: Spanning Tree Packing and Covering
- Potential Sequences: Supereulerian and line-hamiltonian Realizations
- Potential Sequences: Super Edge-connected Realizations
- Potential Sequences: Highly edge-connected hypergraph realizations
- Potential Sequences: Strong digraph realizations

 \blacksquare *G*= a graph, $u \in V(G)$.

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.

degree sequence of $G: (d(u_1), \cdots, d(u_n)).$

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.

degree sequence of $G: (d(u_1), \cdots, d(u_n))$.

 $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.

degree sequence of $G: (d(u_1), \cdots, d(u_n))$.

- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.
- degree sequence of $G: (d(u_1), \cdots, d(u_n)).$
- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.
- **Notation:** Let (d) be the family of all *d*-realizations.

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.
- degree sequence of $G: (d(u_1), \cdots, d(u_n)).$
- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.
- **Notation:** Let (d) be the family of all *d*-realizations.
 - graphic sequences (for simple graphs)

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.
- degree sequence of $G: (d(u_1), \cdots, d(u_n)).$
- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.
- **Notation:** Let (d) be the family of all *d*-realizations.
 - graphic sequences (for simple graphs)
 - mutigraphic sequences

- \blacksquare *G*= a graph, $u \in V(G)$.
- d(u): degree of u.
- degree sequence of $G: (d(u_1), \cdots, d(u_n)).$
- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.
- **Notation:** Let (d) be the family of all *d*-realizations.
 - graphic sequences (for simple graphs)
 - mutigraphic sequences
 - (strict, oriented) digraphic outdegree (indegree) sequences $d^+ = (d_1^+, \dots, d_n^+)$ $(d^- = (d_1^-, \dots, d_n^-)).$

- \blacksquare G= a graph, $u \in V(G)$.
- d(u): degree of u.
- degree sequence of $G: (d(u_1), \cdots, d(u_n)).$
- $\blacksquare d = (d_1, \cdots, d_n) \text{ is nonincreasing if } d_1 \ge \cdots \ge d_n.$
- \blacksquare *G* is a *d*-realization.
- **Notation:** Let (d) be the family of all *d*-realizations.
 - graphic sequences (for simple graphs)
 - mutigraphic sequences
- (strict, oriented) digraphic outdegree (indegree) sequences $d^+ = (d_1^+, \dots, d_n^+)$ $(d^- = (d_1^-, \dots, d_n^-)).$
- hypergraphic sequences

Example

$$\blacksquare d = (4, 4, 3, 2, 1, 1, 1)$$

d is graphic if there exists simple graph G with degree sequence d.

- d is graphic if there exists simple graph G with degree sequence d.
- \blacksquare G is called a d-realization.

- d is graphic if there exists simple graph G with degree sequence d.
- \blacksquare G is called a d-realization.
- **Example** d = (4, 4, 3, 2, 1, 1, 1)

A forcible degree sequence for a graphical property P (or a forcible P-sequence) is a degree sequence d such that any $G \in (d)$ must have property P.

- A forcible degree sequence for a graphical property P (or a forcible P-sequence) is a degree sequence d such that any $G \in (d)$ must have property P.
- Let $d = (d_1, d_2, ..., d_n)$ be a graphic sequence with $d_1 \ge d_2 \ge ... \ge d_n$ and $n \ge 3$.

- A forcible degree sequence for a graphical property P (or a forcible P-sequence) is a degree sequence d such that any $G \in (d)$ must have property P.
- Let $d = (d_1, d_2, ..., d_n)$ be a graphic sequence with $d_1 \ge d_2 \ge ... \ge d_n$ and $n \ge 3$.
- Theorem (Chvatal, JCTB 1972) If for any $1 \le i \le n/2$, we have $d_i \ge i$ or $d_{n-i} \ge n-i+1$, then G is hamiltonian.

- A forcible degree sequence for a graphical property P (or a forcible P-sequence) is a degree sequence d such that any $G \in (d)$ must have property P.
- Let $d = (d_1, d_2, ..., d_n)$ be a graphic sequence with $d_1 \ge d_2 \ge ... \ge d_n$ and $n \ge 3$.
- Theorem (Chvatal, JCTB 1972) If for any $1 \le i \le n/2$, we have $d_i \ge i$ or $d_{n-i} \ge n i + 1$, then G is hamiltonian.
- Theorem (Bollobas, DM 1979) If for any $1 \le i \le \min\{n/2 1, d_n\}$, $\sum_{i=1}^{i} (d_i + d_{n-i}) \ge in - 1$, then $\kappa'(G) = \delta(G) = d_n$.

Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)

- Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)
- Conjecture (Nash-Williams, Studies in Math. 1975) Suppose that *D* is strong. If for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$, or (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$, then *D* is hamiltonian.

- Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)
- Conjecture (Nash-Williams, Studies in Math. 1975) Suppose that *D* is strong. If for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$, or (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$, then *D* is hamiltonian.

Theorem (Kuhn, Osthus, and Tregrown, 2010) For any a $\eta > 0$, there exists an integer $n_0 = n_0(\eta)$ such that every digraph D is hamiltonian provided it satisfies that for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$, or (ii) $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$, then D is hamiltonian.

- Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)
- Conjecture (Nash-Williams, Studies in Math. 1975) Suppose that *D* is strong. If for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$, or (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$, then *D* is hamiltonian.
- Theorem (Kuhn, Osthus, and Tregrown, 2010) For any a $\eta > 0$, there exists an integer $n_0 = n_0(\eta)$ such that every digraph D is hamiltonian provided it satisfies that for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n i$, or (ii) $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n i$, then D is hamiltonian.

There are quite a few other forcible degree sequence results/problems.

- Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)
- Conjecture (Nash-Williams, Studies in Math. 1975) Suppose that *D* is strong. If for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$, or (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$, then *D* is hamiltonian.
- Theorem (Kuhn, Osthus, and Tregrown, 2010) For any a $\eta > 0$, there exists an integer $n_0 = n_0(\eta)$ such that every digraph D is hamiltonian provided it satisfies that for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n i$, or (ii) $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n i$, then D is hamiltonian.

There are quite a few other forcible degree sequence results/problems.

Open Problem. Characterize forcible sequences for hamiltonian graphs.

- Let *D* be a (strict) digraph, $d^+ = (d_1^+, d_2^+, ..., d_n^+)$ and $d^- = (d_1^-, d_2^-, ..., d_n^-)$ be the out- and in-degree sequences of *D* with $d_1^+ \le d_2^+ \le ... \le d_n^+$ and $d_1^- \le d_2^- \le ... \le d_n^-$. (They are called a pair of digraphic sequences.)
- Conjecture (Nash-Williams, Studies in Math. 1975) Suppose that *D* is strong. If for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$, or (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$, then *D* is hamiltonian.
- Theorem (Kuhn, Osthus, and Tregrown, 2010) For any a $\eta > 0$, there exists an integer $n_0 = n_0(\eta)$ such that every digraph D is hamiltonian provided it satisfies that for any $1 \le i \le n/2$, either (i) $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n i$, or (ii) $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n i$, then D is hamiltonian.

There are quite a few other forcible degree sequence results/problems.

- Open Problem. Characterize forcible sequences for hamiltonian graphs.
- Open Problem. Characterize forcible sequences for k-connected (k-edge-connected) graphs.

Degree Sequences Realization Problem

Problem An *n* processor network has *n* processors $v_1, v_2, ..., v_n$ such that each v_i has a given number d_i of connections. It is expected to design such a network so that it has a certain level of strength or reliability.

Degree Sequences Realization Problem

- Problem An *n* processor network has *n* processors $v_1, v_2, ..., v_n$ such that each v_i has a given number d_i of connections. It is expected to design such a network so that it has a certain level of strength or reliability.
- This amounts to the following: given a graphic sequence d and a graphical property P, is there a d realization satisfying P?

Degree Sequences Realization Problem

- Problem An *n* processor network has *n* processors $v_1, v_2, ..., v_n$ such that each v_i has a given number d_i of connections. It is expected to design such a network so that it has a certain level of strength or reliability.
- This amounts to the following: given a graphic sequence d and a graphical property P, is there a d realization satisfying P?
- A potential degree sequence for a graphical property P (or a potential *P*-sequence) is a degree sequence d such that there exists one $G \in (d)$ that has property P.
Unlike forcible sequences, for the potential P-sequence problem, we seek only one d-realization that has the property P.

- Unlike forcible sequences, for the potential P-sequence problem, we seek only one d-realization that has the property P.
- Common problem. Characterize potential *P*-sequences.

- Unlike forcible sequences, for the potential P-sequence problem, we seek only one d-realization that has the property P.
- Common problem. Characterize potential *P*-sequences.
- Find necessary and/or sufficient conditions on d for d to be a potential P-sequence.

- Unlike forcible sequences, for the potential P-sequence problem, we seek only one d-realization that has the property P.
- Common problem. Characterize potential *P*-sequences.
- Find necessary and/or sufficient conditions on d for d to be a potential P-sequence.

Major Tool: Given G ∈ (d), do
(i) Find a matching e₁, e₂ ∈ E(G) and a matching f₁, f₂ in G^c such that e₁, e₂, f₁, f₂ form a 4-cycle in K_n.
(ii) Switching: G' := G − {e₁, e₂} + {f₁, f₂} ∈ (d).
(iii) Compare to see if G' is more favorable than G.

– p. 9/30

spanning tree T of G: connected acyclic subgraph of G which contains every vertex of G.

spanning tree T of G: connected acyclic subgraph of G which contains every vertex of G.

|E(T)| = |V(G)| - 1 = n - 1

spanning tree T of G: connected acyclic subgraph of G which contains every vertex of G.

|E(T)| = |V(G)| - 1 = n - 1

T₁ and T_2 are edge-disjoint spanning trees of G if both T_1 and T_2 are spanning trees of G satisfying $E(T_1) \cap E(T_2) = \emptyset$.

- spanning tree T of G: connected acyclic subgraph of G which contains every vertex of G.
- |E(T)| = |V(G)| 1 = n 1
- T₁ and T_2 are edge-disjoint spanning trees of G if both T_1 and T_2 are spanning trees of G satisfying $E(T_1) \cap E(T_2) = \emptyset$.
- Problem. For a given integer k > 0, can we characterize graphic sequences $d = (d_1, d_2, \dots, d_n)$ which has a realization with k-edge-disjoint spanning trees?

 $\square \omega(H)$: = number of connected components of *H*.

- $\square \omega(H)$: = number of connected components of *H*.
- \frown $\tau(G)$: = maximum number of edge-disjoint spanning trees of G

- $\square \omega(H)$: = number of connected components of *H*.
- \frown $\tau(G)$: = maximum number of edge-disjoint spanning trees of G
- **Problem.** Characterize potential sequences for $\tau(G) \ge k$.

- $\omega(H)$: = number of connected components of H.
- \frown $\tau(G)$: = maximum number of edge-disjoint spanning trees of G
- Problem. Characterize potential sequences for $\tau(G) \ge k$.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph G, $\tau(G) \ge k$ if and only if $\forall X \subseteq E(G)$, $|X| \ge k(\omega(G X) 1)$.

Theorem (Liang, Li, HJL DAM 2010) Let $d = (d_1, \dots, d_n)$ be a nonincreasing graphic sequence. Then d has a realization G with $\tau(G) \ge k$ if and only if either n = 1 and $d_1 = 0$ or n > 1 and each of the following statements holds (i) $d_n \ge k$, and (ii) $\sum_{i=1}^n d_i \ge 2k(n-1)$.

Theorem (Liang, Li, HJL DAM 2010) Let $d = (d_1, \dots, d_n)$ be a nonincreasing graphic sequence. Then d has a realization G with $\tau(G) \ge k$ if and only if either n = 1 and $d_1 = 0$ or n > 1 and each of the following statements holds (i) $d_n \ge k$, and (ii) $\sum_{i=1}^n d_i \ge 2k(n-1)$.

Necessity: Let $T_1, T_2, ..., T_k$ be disjoint spanning trees of G. Then

$$\sum_{i=1}^{n} d_i = 2|E(G)|$$

$$\geq 2|E(T_1) \cup E(T_2) \cup \cdots \cup E(T_k)|$$

$$= 2k(n-1).$$

Theorem (Liang, Li, HJL DAM 2010) Let $d = (d_1, \dots, d_n)$ be a nonincreasing graphic sequence. Then d has a realization G with $\tau(G) \ge k$ if and only if either n = 1 and $d_1 = 0$ or n > 1 and each of the following statements holds (i) $d_n \ge k$, and (ii) $\sum_{i=1}^n d_i \ge 2k(n-1)$.

Necessity: Let $T_1, T_2, ..., T_k$ be disjoint spanning trees of G. Then

$$\sum_{i=1}^{n} d_i = 2|E(G)|$$

$$\geq 2|E(T_1) \cup E(T_2) \cup \cdots \cup E(T_k)|$$

$$= 2k(n-1).$$

Proving the sufficiency is more involved.

 \square $a_1(G)$: = minimum number of spanning trees of G whose union covers E(G).

- $a_1(G)$: = minimum number of spanning trees of G whose union covers E(G).
- Theorem (Nash-Williams [J. London Math. Soc. (1964)]) For a connected graph G, $a_1(G) \le k$ if and only if $\forall X \subseteq E(G)$, $|X| \le k(|V(G[X])) \omega(G[X]))$.

- $a_1(G)$: = minimum number of spanning trees of G whose union covers E(G).
- Theorem (Nash-Williams [J. London Math. Soc. (1964)]) For a connected graph G, $a_1(G) \leq k$ if and only if $\forall X \subseteq E(G)$, $|X| \leq k(|V(G[X])) \omega(G[X]))$.
- Theorem (Liu, Zhang, Zhang and HJL, DAM 2015) Let k₂ ≥ k₁ ≥ 0 and n > 1 be integers. Let d = (d₁, d₂, ..., d_n) with d₁ ≥ d₂ ≥ ... ≥ d_n be a graphic sequence and let I = {i : d_i < k₂}. Then there exists a graph G ∈ (d) such that k₂ ≥ a(G) ≥ τ(G) ≥ k₁ if and only if each of the following holds.
 (i) d_n ≥ k₁.
 (ii) 2k₂(n |I| 1) + 2∑_{i∈I} d_i ≥ ∑_{i=1}ⁿ d_i ≥ 2k₁(n 1).

Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let $n \ge 2$ and k > 0 be integers. For a graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$, the following are equivalent.

(i) There exists a *d*-realization G such that $a(G) \leq k$.

(ii) $\sum_{i=1}^{n} d_i \leq 2k(n - |I| - 1) + 2\sum_{i \in I} d_i$, where $I = \{i : d_i < k\}$.

Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let $n \ge 2$ and k > 0 be integers. For a graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$, the following are equivalent.

(i) There exists a *d*-realization G such that $a(G) \leq k$.

- (ii) $\sum_{i=1}^{n} d_i \leq 2k(n |I| 1) + 2\sum_{i \in I} d_i$, where $I = \{i : d_i < k\}$.
- Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let $n \ge 2$ and k > 0 be integers. For a graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$, there exists $G \in (d)$ such that $a(G) = \tau(G) = k$ if and only if $d_n \ge k$ and $\sum_{i=1}^n d_i = 2k(n-1)$.

- Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let $n \ge 2$ and k > 0 be integers. For a graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$, the following are equivalent.
 - (i) There exists a *d*-realization G such that $a(G) \leq k$.
 - (ii) $\sum_{i=1}^{n} d_i \leq 2k(n |I| 1) + 2\sum_{i \in I} d_i$, where $I = \{i : d_i < k\}$.
- Corollary (Liu, Zhang, Zhang and HJL, DAM 2015) Let $n \ge 2$ and k > 0 be integers. For a graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$, there exists $G \in (d)$ such that $a(G) = \tau(G) = k$ if and only if $d_n \ge k$ and $\sum_{i=1}^n d_i = 2k(n-1)$.

Open Problem: What are the forcible degree sequence condition for Spanning Trees Packing and Covering?

Realizations

 \bigcirc O(G): = set of odd degree vertices.

- \bigcirc O(G): = set of odd degree vertices.
- G is eulerian if G is connected with $O(G) = \emptyset$.

- \bigcirc O(G): = set of odd degree vertices.
- G is eulerian if G is connected with $O(G) = \emptyset$.
- A graph G is supereulerian if G contains a spanning eulerian subgraphs.

- \bigcirc O(G): = set of odd degree vertices.
- G is eulerian if G is connected with $O(G) = \emptyset$.
 - A graph G is supereulerian if G contains a spanning eulerian subgraphs.
- Problem. Can we characterize graphic sequences $d = (d_1, d_2, \dots, d_n)$ which has a supereulerian realization?

- \bigcirc O(G): = set of odd degree vertices.
- G is eulerian if G is connected with $O(G) = \emptyset$.
- A graph G is supereulerian if G contains a spanning eulerian subgraphs.
- Problem. Can we characterize graphic sequences $d = (d_1, d_2, \dots, d_n)$ which has a supereulerian realization?
 - Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.

Realizations

A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.

Realizations

A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.

Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.

- A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.
- (i) There exists a graph $G \in (d)$ such that G is line-hamiltonian.

- A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.
- (i) There exists a graph $G \in (d)$ such that G is line-hamiltonian.
- (ii) Either $d_1 = n 1$, or $\sum_{d_i=1} d_i \le \sum_{d_j \ge 2} (d_j 2)$.

Realizations

- A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.
- (i) There exists a graph $G \in (d)$ such that G is line-hamiltonian.
- (ii) Either $d_1 = n 1$, or $\sum_{d_i=1} d_i \le \sum_{d_j \ge 2} (d_j 2)$.

Open Problem. Find forcible degree sequence conditions for being supereulerian.

Realizations

- A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.
- (i) There exists a graph $G \in (d)$ such that G is line-hamiltonian.

(ii) Either
$$d_1 = n - 1$$
, or $\sum_{d_i=1} d_i \le \sum_{d_j \ge 2} (d_j - 2)$.

Open Problem. Find forcible degree sequence conditions for being supereulerian.

Open Problem. Find forcible degree sequence conditions for being line-hamiltonian.

Realizations

- A graph G is line-hamiltonian if L(G), the line graph of G, is hamiltonian.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then the following are equivalent.
- (i) There exists a graph $G \in (d)$ such that G is line-hamiltonian.

(ii) Either
$$d_1 = n - 1$$
, or $\sum_{d_i=1} d_i \le \sum_{d_j \ge 2} (d_j - 2)$.

Open Problem. Find forcible degree sequence conditions for being supereulerian.

- Open Problem. Find forcible degree sequence conditions for being line-hamiltonian.
- Open Problem. Find forcible/potential degree sequences for other hamiltonian properties of line graphs.

Realizations

Can these be extended to multigraphs?
Supereulerian and line-hamiltonian

Realizations

- Can these be extended to multigraphs?
- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is multigraphic if there exists a multigraph *G* with *d* as a degree sequence.

Supereulerian and line-hamiltonian

Realizations

- Can these be extended to multigraphs?
- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is multigraphic if there exists a multigraph *G* with *d* as a degree sequence.
- Theorem (X. Gu, Y. Liang, and HJL, AML 2012) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then d has a superculerian realization if and only if either n 1, or $n \ge 2$ and $d_n \ge 2$.

Supereulerian and line-hamiltonian

Realizations

- Can these be extended to multigraphs?
- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is multigraphic if there exists a multigraph *G* with *d* as a degree sequence.
- Theorem (X. Gu, Y. Liang, and HJL, AML 2012) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then d has a supereulerian realization if and only if either n 1, or $n \ge 2$ and $d_n \ge 2$.

Theorem (X. Gu, Y. Liang, and HJL, AML 2012) $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then d has a line-hamiltonian realization if and only if either $d_1 = n - 1$, or $\sum_{d_i=1} d_i \le \sum_{d_i\ge 2} (d_j - 2)$.

A graph *G* is super edge-connected if every minimum edge-cut isolates a vertex of *G*.

- A graph *G* is super edge-connected if every minimum edge-cut isolates a vertex of *G*.
 - **Example.** A (simple) cycle C_n is super edge-connected if and only if n = 3.

- A graph *G* is super edge-connected if every minimum edge-cut isolates a vertex of *G*.
- **Example.** A (simple) cycle C_n is super edge-connected if and only if n = 3.
- Problem. Characterize potential sequences for super edge-connectedness.

- A graph *G* is super edge-connected if every minimum edge-cut isolates a vertex of *G*.
- **Example.** A (simple) cycle C_n is super edge-connected if and only if n = 3.
- Problem. Characterize potential sequences for super edge-connectedness.
- Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n = 1$ be a graphic sequence. Then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if one of the following holds.

(i)
$$d_1 = n - 1$$
 and $\sum_{i=1}^n d_i = 2(n - 1)$, or
(ii) $\sum_{i=1}^n d_i \ge 2$.

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer and $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots d_{n-t} > d_{n-t+1} = \dots = d_n = 2$ be a graphic sequence. Then each of the following holds. (i) If t = n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if n = 3. (ii) If t < n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if both $\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^{n} d_i = 2t$ and $d_1 \le \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i\right)$.

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer and $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots d_{n-t} > d_{n-t+1} = \dots = d_n = 2$ be a graphic sequence. Then each of the following holds. (i) If t = n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if n = 3. (ii) If t < n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if both $\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^{n} d_i = 2t$ and $d_1 \le \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i\right)$.

Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer and $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots d_{n-t} > d_{n-t+1} = \dots = d_n = 2$ be a graphic sequence. Then each of the following holds.

(i) If t = n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if n = 3.

(ii) If t < n, then there exists a graph $G \in (d)$ such that G is super edge-connected

if and only if both
$$\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^n d_i = 2t$$
 and $d_1 \le \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i \right)$.

Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.

If
$$t < n$$
, then $\{v_{n-t+1}, ..., v_n\}$ is an independent set and so

$$\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^n d_i = 2t. \text{ As } 2|E(G - \{v_{n-t+1}, ..., v_n\})| = \sum_{i=1}^{n-t} d_i - 2t, \text{ we have}$$

$$d_1 \le t + \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i - 2t\right).$$

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Let t > 0 be an integer and $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots d_{n-t} > d_{n-t+1} = \dots = d_n = 2$ be a graphic sequence. Then each of the following holds.

(i) If t = n, then there exists a graph $G \in (d)$ such that G is super edge-connected if and only if n = 3.

(ii) If t < n, then there exists a graph $G \in (d)$ such that G is super edge-connected

if and only if both
$$\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^n d_i = 2t$$
 and $d_1 \le \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i \right)$.

Necessity If n = t, then a cycle is super edge-connected iff it is a 3-cycle.

If
$$t < n$$
, then $\{v_{n-t+1}, ..., v_n\}$ is an independent set and so

$$\sum_{i=1}^{n-t} d_i \ge \sum_{i=n-t+1}^n d_i = 2t. \text{ As } 2|E(G - \{v_{n-t+1}, ..., v_n\})| = \sum_{i=1}^{n-t} d_i - 2t, \text{ we have}$$

$$d_1 \le t + \frac{1}{2} \left(\sum_{i=1}^{n-t} d_i - 2t\right).$$

Theorem (Y. Tian, J, Meng, Z. Zhang and HJL, DM 2014) Every graphic sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n \ge 3$ has a super edge-connected realization.

Definition Given an integer k > 0 and a graph G with a fixed orientation D. A function $f : E(G) \to Z_k - \{0\}$ is a nowhere-zero Z_k -flow if at every vertex v, the flow-in amount amount at v equals to the flow-out amount amount at v under f.

- Definition Given an integer k > 0 and a graph G with a fixed orientation D. A function $f : E(G) \to Z_k \{0\}$ is a nowhere-zero Z_k -flow if at every vertex v, the flow-in amount amount at v equals to the flow-out amount amount at v under f.
- Problem Characterize forcible/potential degree sequences for the existence of a nowhere-zero Z_k -flow.

- Definition Given an integer k > 0 and a graph G with a fixed orientation D. A function $f : E(G) \to Z_k \{0\}$ is a nowhere-zero Z_k -flow if at every vertex v, the flow-in amount amount at v equals to the flow-out amount amount at v under f.
- Problem Characterize forcible/potential degree sequences for the existence of a nowhere-zero Z_k -flow.
- Theorem (R. Luo, W. Zang, and CQ Zhang, Combinatorica 2004) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a bipartite graphic sequence. Then *d* has a bipartite realization that has a nowhere-zero 4-flow if and only if $d_n \ge 2$.

- Definition Given an integer k > 0 and a graph G with a fixed orientation D. A function $f : E(G) \to Z_k \{0\}$ is a nowhere-zero Z_k -flow if at every vertex v, the flow-in amount amount at v equals to the flow-out amount amount at v under f.
- Problem Characterize forcible/potential degree sequences for the existence of a nowhere-zero Z_k -flow.
- Theorem (R. Luo, W. Zang, and CQ Zhang, Combinatorica 2004) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a bipartite graphic sequence. Then *d* has a bipartite realization that has a nowhere-zero 4-flow if and only if $d_n \ge 2$.
- Theorem (F. Jaeger, 1978) Every supereulerian graph has a nowhere-zero Z_4 -flow.

- Definition Given an integer k > 0 and a graph G with a fixed orientation D. A function $f : E(G) \to Z_k \{0\}$ is a nowhere-zero Z_k -flow if at every vertex v, the flow-in amount amount at v equals to the flow-out amount amount at v under f.
- Problem Characterize forcible/potential degree sequences for the existence of a nowhere-zero Z_k -flow.
- Theorem (R. Luo, W. Zang, and CQ Zhang, Combinatorica 2004) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a bipartite graphic sequence. Then *d* has a bipartite realization that has a nowhere-zero 4-flow if and only if $d_n \ge 2$.
- Theorem (F. Jaeger, 1978) Every supereulerian graph has a nowhere-zero Z_4 -flow.
- Theorem (S. Fan, Y. Shao, T. Zhang, J. Zhou and HJL, DM 2008) Let $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ be a graphic sequence. Then d has a realization that has a nowhere-zero Z_4 -flow if and only if $d_n \ge 2$.

An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is hypergraphic if there exists a hypergraph *H* with *d* as a degree sequence.

- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is hypergraphic if there exists a hypergraph H with d as a degree sequence.
- A hypergraph H is r-uniform if every (hyper)edge of H has r vertices.

- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is hypergraphic if there exists a hypergraph *H* with *d* as a degree sequence.
- A hypergraph H is r-uniform if every (hyper)edge of H has r vertices.
- A hypergraph *H* is *k*-edge-connected if every for any partition V_1 and V_2 of V(H) into nonempty sets, there are at least *k* (hyper)edge of *H* intersecting both V_1 and V_2 .

- An integral sequence $d = (d_1, d_2, \dots, d_n)$ with $d_1 \ge d_2 \ge \dots \ge d_n$ is hypergraphic if there exists a hypergraph *H* with *d* as a degree sequence.
- A hypergraph H is r-uniform if every (hyper)edge of H has r vertices.
- A hypergraph *H* is *k*-edge-connected if every for any partition V_1 and V_2 of V(H) into nonempty sets, there are at least *k* (hyper)edge of *H* intersecting both V_1 and V_2 .
- Problem. Characterize forcible/potential hypergraphic sequence for k-edge-connectedness.

realizations

Theorem (Edmonds 1964) A graphic sequence $d = (d_1, d_2, \dots, d_n)$ has a k-edge-connected realization if and only if (i) $d_i \ge k$ for $i = 1, 2, \dots, n$; (ii) $\sum_{i=1}^n d_i \ge 2(n-1)$ if k = 1.

realizations

Theorem (Edmonds 1964) A graphic sequence $d = (d_1, d_2, \dots, d_n)$ has a k-edge-connected realization if and only if (i) $d_i \ge k$ for $i = 1, 2, \dots, n$; (ii) $\sum_{i=1}^n d_i \ge 2(n-1)$ if k = 1.

Theorem (Boonyasombat, 1984) An *r*-uniform hypergraphic sequence $d = (d_1, d_2, \dots, d_n)$ has a connected realization if and only if (i) $d_i \ge 1$ for $i = 1, 2, \dots, n$; (ii) $\sum_{i=1}^n d_i \ge \frac{r(n-1)}{r-1}$.

realizations

Theorem (Edmonds 1964) A graphic sequence d = (d₁, d₂, ..., d_n) has a k-edge-connected realization if and only if
(i) d_i ≥ k for i = 1, 2, ..., n;

- (ii) $\sum_{i=1}^{n} d_i \ge 2(n-1)$ if k = 1.
- Theorem (Boonyasombat, 1984) An *r*-uniform hypergraphic sequence $d = (d_1, d_2, \cdots, d_n)$ has a connected realization if and only if (i) $d_i \ge 1$ for $i = 1, 2, \cdots, n$; (ii) $\sum_{i=1}^n d_i \ge \frac{r(n-1)}{r-1}$.
- Theorem (X. Gu and HJL, DM 2013) An *r*-uniform hypergraphic sequence $d = (d_1, d_2, \cdots, d_n)$ has a *k*-edge-connected realization if and only if (i) $d_i \ge k$ for $i = 1, 2, \cdots, n$; (ii) $\sum_{i=1}^n d_i \ge \frac{r(n-1)}{r-1}$ if k = 1.

realizations

Theorem (Tusyadej, 1989) A nonincreasing integer sequence $d = (d_1, d_2, \cdots, d_n)$ is the degree sequence of a connected *r*-uniform hypergraph (possibly with multiple edges) if and only if each of the following holds (i) $\sum_{i=1}^{n} d_i$ is a multiple of *r*; (ii) $d_n \ge 1$; and (iii) $\sum_{i=1}^{n} d_i \ge \max\{\frac{r(n-1)}{r-1}, rd_1\}$.

realizations

Theorem (Tusyadej, 1989) A nonincreasing integer sequence $d = (d_1, d_2, \dots, d_n)$ is the degree sequence of a connected *r*-uniform hypergraph (possibly with multiple edges) if and only if each of the following holds (i) $\sum_{i=1}^{n} d_i$ is a multiple of *r*;

(ii)
$$d_n \geq 1$$
; and

(iii)
$$\sum_{i=1}^{n} d_i \ge \max\{\frac{r(n-1)}{r-1}, rd_1\}.$$

Theorem (X. Gu and HJL, DM 2013) A nonincreasing integer sequence $d = (d_1, d_2, \dots, d_n)$ is the degree sequence of a *k*-edge-connected *r*-uniform hypergraph (possibly with multiple edges) if and only if each of the following holds (i) $\sum_{i=1}^{n} d_i$ is a multiple of *r*; (ii) $d_n \ge k$; and (iii) $\sum_{i=1}^{n} d_i \ge k$; and

(iii) $\sum_{i=1}^{n} d_i \ge \max\{\frac{r(n-1)}{r-1}, rd_1\}.$

A sequence of of non-negative integers pairs $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ is (strict) digraphic if there exists a (strict) digraph *D* with

A sequence of of non-negative integers pairs $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ is (strict) digraphic if there exists a (strict) digraph *D* with

 $V(D) = \{v_1, v_2, \cdots, v_n\}$ satisfying

- A sequence of of non-negative integers pairs $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ is (strict) digraphic if there exists a (strict) digraph *D* with
- $V(D) = \{v_1, v_2, \cdots, v_n\}$ satisfying
- $\blacksquare d_D^+(v_i) = d_i^+ \text{ and } d_D^-(v_i) = d_i^- \text{ for each } i$

- A sequence of of non-negative integers pairs $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ is (strict) digraphic if there exists a (strict) digraph *D* with
- $V(D) = \{v_1, v_2, \cdots, v_n\}$ satisfying
- $\blacksquare d_D^+(v_i) = d_i^+ \text{ and } d_D^-(v_i) = d_i^- \text{ for each } i$

Theorem (Fulkerson (1960)-Ryser (1963)) Let $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a sequence of non-negative integer pairs with $d_1^+ \ge \dots \ge d_n^+$. Then d is strict digraphic if and only if each of the following holds:

(i)
$$d_i^+ \le n - 1, d_i^- \le n - 1$$
 for all $1 \le i \le n$;
(ii) $\sum_{i=1}^n d_i^+ = \sum_{i=1}^n d_i^-$;
(iii) $\sum_{i=1}^k d_i^+ \le \sum_{i=1}^k \min\{k - 1, d_i^-\} + \sum_{i=k+1}^n \min\{k, d_i^-\}$ for all $1 \le k \le n$.

Theorem. (Beineke and Harary, JLM Soc. 1966) Let $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a digraphic sequence. The following are equivalent.

(i) There exists a strict strong digraph D.

(ii) For any *i* with $1 \le i \le n$, both $d_i^+ > 0$ and $d_i^- > 0$, and either for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^+ < \sum_{i=1}^k d_i^- + \sum_{j=k+1}^n \min\{k, d_j^-\}$, or for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^- < \sum_{i=1}^k d_i^+ + \sum_{j=k+1}^n \min\{k, d_j^+\}$,

Theorem. (Beineke and Harary, JLM Soc. 1966) Let

 $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a digraphic sequence. The following are equivalent.

(i) There exists a strict strong digraph D.

(ii) For any *i* with $1 \le i \le n$, both $d_i^+ > 0$ and $d_i^- > 0$, and either for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^+ < \sum_{i=1}^k d_i^- + \sum_{j=k+1}^n \min\{k, d_j^-\}$, or for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^- < \sum_{i=1}^k d_i^+ + \sum_{j=k+1}^n \min\{k, d_j^+\}$,

Open Problem. Characterize forcible digraphic sequences for strong connectedness.

Theorem. (Beineke and Harary, JLM Soc. 1966) Let

 $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a digraphic sequence. The following are equivalent.

(i) There exists a strict strong digraph D.

(ii) For any *i* with $1 \le i \le n$, both $d_i^+ > 0$ and $d_i^- > 0$, and either for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^+ < \sum_{i=1}^k d_i^- + \sum_{j=k+1}^n \min\{k, d_j^-\}$, or for each *k* with $1 \le k < n$, $\sum_{i=1}^k d_i^- < \sum_{i=1}^k d_i^+ + \sum_{j=k+1}^n \min\{k, d_j^+\}$,

- Open Problem. Characterize forcible digraphic sequences for strong connectedness.
- Open Problem. For k > 1, characterize forcible digraphic sequences for strong k-connectedness (arc k-connectedness).

Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a sequence of non-negative integer pairs. Then *d* is multi-digraphic if and only if each of the following holds:

(i) $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^-$; (ii) for $k = 1, \dots, n, \ d_k^+ \le \sum_{i \ne k} d_i^-$.

- Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a sequence of non-negative integer pairs. Then *d* is multi-digraphic if and only if each of the following holds:
 - (i) $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^-$; (ii) for $k = 1, \dots, n, \ d_k^+ \le \sum_{i \ne k} d_i^-$.
- For given a (strict) digraphic sequence $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ with $d_1^+ \ge \dots \ge d_n^+$, and for any k with $1 \le k \le n$, define

$$f(k) = \sum_{i=1}^{k} (d_i^- - d_i^+) + \sum_{i=k+1}^{n} \min\{k, d_i^-\}.$$

- Theorem (Y. Hong, Q. Liu, HJL JGT 2017) Let $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ be a sequence of non-negative integer pairs. Then *d* is multi-digraphic if and only if each of the following holds:
 - (i) $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^-$; (ii) for $k = 1, \dots, n, \ d_k^+ \le \sum_{i \ne k} d_i^-$.
- For given a (strict) digraphic sequence $d = \{(d_1^+, d_1^-), \dots, (d_n^+, d_n^-)\}$ with $d_1^+ \ge \dots \ge d_n^+$, and for any k with $1 \le k \le n$, define

$$f(k) = \sum_{i=1}^{k} (d_i^- - d_i^+) + \sum_{i=k+1}^{n} \min\{k, d_i^-\}.$$

- Theorem (Y. Hong, Q. Liu, HJL JGT 2017) d has a strong strict d-realization if and only if both of the following hold.
 - (i) $d_i^+ \ge 1, d_i^- \ge 1$ for all $1 \le i \le n$; (ii) $f(k) \ge 1$ for all $1 \le k \le n - 1$.

Future Problems

Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.
Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.

It is known that $\sum_{i=1}^{n} d_i \leq 6n - 12$ is a necessary condition.

- Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 6n 12$ is a necessary condition.
- Problem. Find forcible/feasible degree sequence conditions for a graph G to be K_3 -free and planar.

- Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 6n 12$ is a necessary condition.
- Problem. Find forcible/feasible degree sequence conditions for a graph G to be K_3 -free and planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 4n-8$ is a necessary condition.

- Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 6n 12$ is a necessary condition.
- Problem. Find forcible/feasible degree sequence conditions for a graph G to be K_3 -free and planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 4n 8$ is a necessary condition.
- Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with $\Delta(T_i) \leq \lceil \Delta(G)/k \rceil$?

- Problem. Find forcible/feasible degree sequence conditions for a graph G to be planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 6n 12$ is a necessary condition.
- Problem. Find forcible/feasible degree sequence conditions for a graph G to be K_3 -free and planar.
- It is known that $\sum_{i=1}^{n} d_i \leq 4n 8$ is a necessary condition.
- Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with $\Delta(T_i) \leq \lceil \Delta(G)/k \rceil$?
- Related Problem. For any given integer k > 0, is there an integer $f_1(k)$ such that every graph G with $\tau(G) \ge f_1(k)$ has k edge-disjoint spanning trees T_1, T_2, \dots, T_k such that $\Delta(T_i) \le \lceil \Delta(G)/k \rceil$?

Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with the property that for any $v \in V(G)$, $d_{T_i}(v) \leq \lceil d_G(v)/k \rceil$?

- Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with the property that for any $v \in V(G)$, $d_{T_i}(v) \leq \lceil d_G(v)/k \rceil$?
- Related Problem. For any given integer k > 0, is there an integer $f_2(k)$ such that every graph G with $\tau(G) \ge f_2(k)$ has k edge-disjoint spanning trees T_1, T_2, \dots, T_k such that for any $v \in V(G), d_{T_i}(v) \le \lceil d_G(v)/k \rceil$?

- Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with the property that for any $v \in V(G)$, $d_{T_i}(v) \leq \lfloor d_G(v)/k \rfloor$?
- Related Problem. For any given integer k > 0, is there an integer $f_2(k)$ such that every graph G with $\tau(G) \ge f_2(k)$ has k edge-disjoint spanning trees T_1, T_2, \dots, T_k such that for any $v \in V(G)$, $d_{T_i}(v) \le \lceil d_G(v)/k \rceil$?
- Problem. For any given integer k > 0, and constant c > 0, determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with $diameter(T_i) \leq diameter(G) + c$?

- Problem. Determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with the property that for any $v \in V(G)$, $d_{T_i}(v) \leq \lfloor d_G(v)/k \rfloor$?
- Related Problem. For any given integer k > 0, is there an integer $f_2(k)$ such that every graph G with $\tau(G) \ge f_2(k)$ has k edge-disjoint spanning trees T_1, T_2, \dots, T_k such that for any $v \in V(G)$, $d_{T_i}(v) \le \lceil d_G(v)/k \rceil$?
- Problem. For any given integer k > 0, and constant c > 0, determine conditions for a degree sequence d to have a realization G such that G has k edge-disjoint spanning trees T_1, T_2, \dots, T_k with $diameter(T_i) \leq diameter(G) + c$?
- Related Problem. For any given integer k > 0, and constant c > 0, is there an integer $f_3(k,c)$ such that every graph G with $\tau(G) \ge f_3(k,c)$ has k edge-disjoint spanning trees T_1, T_2, \dots, T_k such that $diameter(T_i) \le diameter(G) + c$?

