Rainbow triangles in 3-edge-colored **GRAPHS**

József Balogh, Ping Hu, Bernard Lidický, Florian Pfender, Jan Volec, Michael Young

Guangdong Combinatorics and Graphs Conference 8 July 2018

PROBLEM

Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles \checkmark .

-

PROBLEM

Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles \checkmark .

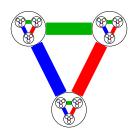
Color edges randomly, expected density $\frac{2}{9}$.

PROBLEM

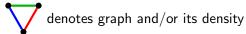
Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles .

Color edges randomly, expected density $\frac{2}{9}$.

Iterated blow-up of triangle



$$\frac{1}{4} =$$



 $F(n) = \max \# \text{ of } \bigvee$ over all 3-edge-colorings of K_n

:

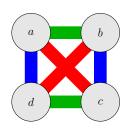
$$F(n) = \max \# \text{ of } \bigvee$$
 over all 3-edge-colorings of K_n

Conjecture (Erdős and Sós; '72-)

For all n > 0,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.



:

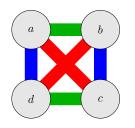
$$F(n) = \max \# \text{ of } \bigvee$$
 over all 3-edge-colorings of K_n

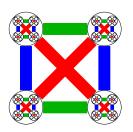
Conjecture (Erdős and Sós; '72⁻)

For all n > 0,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.





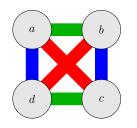
$$F(n) = \max \# \text{ of } \bigvee$$
 over all 3-edge-colorings of K_n

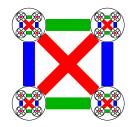
Conjecture (Erdős and Sós; '72-)

For all n > 0.

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.





:

FLAG ALGEBRAS APPLICATION

Construction: $0.4 \le$

- get a matching upper bound $\sqrt{} \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

FLAG ALGEBRAS APPLICATION

Construction:
$$0.4 \le$$

- get a matching upper bound $\sqrt{} \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only

$$\leq$$
 0.4006,

not enough for rounding.

FLAG ALGEBRAS APPLICATION

Construction:
$$0.4 \le$$

- get a matching upper bound $\sqrt{} \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only

not enough for rounding.

The iterative extremal construction is causing troubles....

NOT ITERATED EXTREMAL CONSTRUCTIONS

THEOREM (TURÁN)

of edges over K_I -free graphs is maximized by

Theorem (Hatami, Hladký, Kráľ, Norine, Razborov)

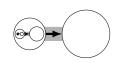
of C_5s over triangle-free graphs is maximized by

THEOREM (CUMMINGS, KRÁL, PFENDER, SPERFELD, TREGLOWN, YOUNG)

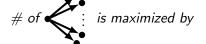
of monochromatic triangles over 3-edge-colored graphs is minimized by

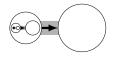
ITERATED EXTREMAL CONSTRUCTIONS

THEOREM (FALGAS-RAVRY, VAUGHAN)



THEOREM (HUANG)





Theorem (Hladký, Kráľ, Norine)

OUR MAIN RESULT

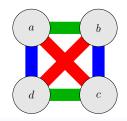
$$F(n) = \max \# \text{ of } \bigvee$$
 over all coloring of K_n

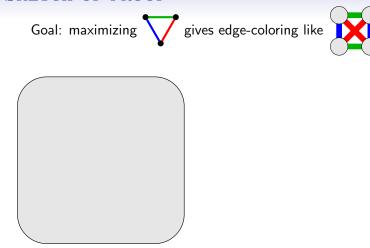
Theorem (Balogh, H., Lidický, Pfender, Volec, Young 2017)

For all $n > n_0$,

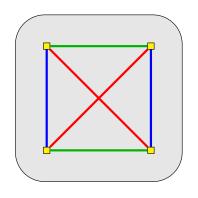
$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible.



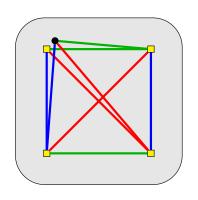


Goal: maximizing gives edge-coloring like



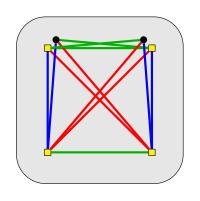
• pick a properly 3-edge-colored K₄

Goal: maximizing gives edge-coloring like

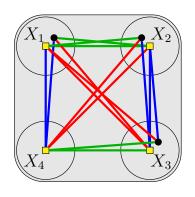


• pick a properly 3-edge-colored K₄

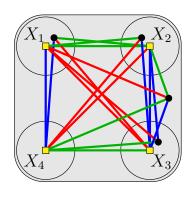
Goal: maximizing gives edge-coloring like



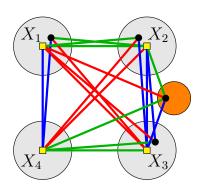
• pick a properly 3-edge-colored K₄



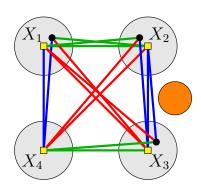
- pick a properly 3-edge-colored K₄
- partition the rest



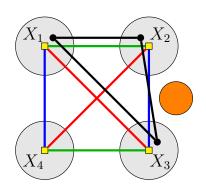
- pick a properly 3-edge-colored K₄
- partition the rest



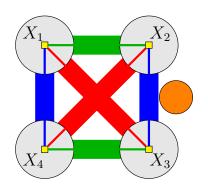
- pick a properly 3-edge-colored K₄
- partition the rest



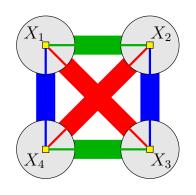
- pick a properly 3-edge-colored K₄
- partition the rest



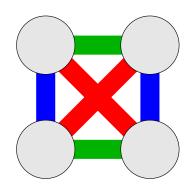
- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is



- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is
- no orange trash

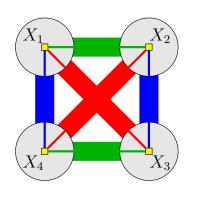


- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_i s



- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_i s

Goal: maximizing gives edge-coloring like



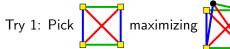
- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_i s

How to pick the properly 3-edge-colored K_4 ?

 $(|X_i|$ s close to 0.25*n*, few wrongly colored edges, small trash)

Use Flag Algebras!

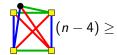
Use Flag Algebras!



Use Flag Algebras!

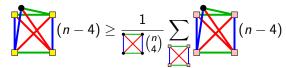
Try 1: Pick

maximizing

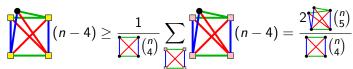


Use Flag Algebras!

Try 1: Pick maximizing

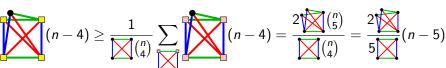


Use Flag Algebras!



Use Flag Algebras!

Try 1: Pick maximizing



$$=\frac{2\sqrt{\binom{n}{5}}}{\sqrt{\binom{n}{4}}}=\frac{2\sqrt{\binom{n}{5}}}{5\sqrt{\binom{n}{4}}}(n-5)$$

Use Flag Algebras!

Try 1: Pick maximizing

$$(n-4) \ge \frac{1}{\left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} \sum_{n=1}^{\infty} (n-4) = \frac{2 \sqrt[n]{\binom{n}{5}}}{\left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \sqrt[n]{\binom{n}{5}}}{5 \sqrt[n]{\binom{n}{4}}} = \frac{2 \sqrt[n]{\binom{n}{5}}}{5 \sqrt[n]{\binom{n}{5}}} = \frac{2 \sqrt[n]{\binom{n}{5}}}{5 \sqrt[n]{\binom{n}{5}}}$$

$$\frac{1}{2}\sum_{k}\sum_{i}\sum_{j}(r_{i})^{k}$$

$$\frac{2\sqrt{\binom{5}{1}}}{\binom{n}{4}} = \frac{2\sqrt{\binom{5}{1}}}{5\sqrt{\binom{5}{1}}} (n-5)$$

FA:
$$\sqrt{} \ge 0.4 \text{ then}$$
 $> 0.23516,$ < 0.0952

Use Flag Algebras!

Try 1: Pick maximizing > 0.988

$$\frac{1}{\sum_{n=1}^{\infty} \binom{n}{4}}$$

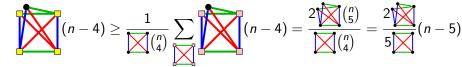
$$(n-4) =$$

$$(n-4) \ge \frac{1}{\left| \sum_{4} \binom{n}{4} \right|} \sum_{n=1}^{\infty} (n-4) = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{\left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{4} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5} \right|} = \frac{2 \left| \sum_{4} \binom{n}{5} \right|}{5 \left| \sum_{4} \binom{n}{5$$

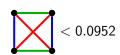
FA: > 0.23516, < 0.0952

Use Flag Algebras!

Try 1: Pick maximizing > 0.988



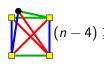
FA:
$$\geq$$
 0.4 then



Result for K_n :

$$|X_1| + |X_2| + |X_3| + |X_4| > 0.988(n-4)$$

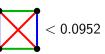
Use Flag Algebras!



$$\frac{1}{\sum_{a=1}^{n} \sum_{a=1}^{n} \sum_{b=1}^{n} \sum_{a=1}^{n} \sum_{a=1}^{n}$$

 $(n-4) \ge \frac{1}{\left| \sum_{n=1}^{n} \sum_{n=1}^{\infty} (n-4) \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{\left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{4} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} = \frac{2 \left| \sum_{n=1}^{\infty} \binom{n}{5}} \right|}{5 \left| \sum_$

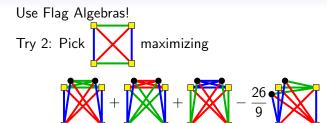
FA:
$$\sqrt{} \ge 0.4 \text{ then}$$
 $> 0.23516,$



Result for K_n :

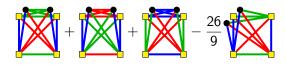
$$|X_1| + |X_2| + |X_3| + |X_4| > 0.988(n-4)$$

Balancing needed...



Use Flag Algebras!

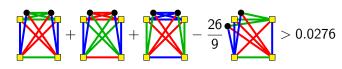
Try 2: Pick



FA:
$$\frac{4}{15} \left(100 +$$

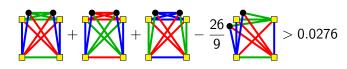
Use Flag Algebras!

Try 2: Pick maximizing



Use Flag Algebras!

Try 2: Pick maximizing



FA:
$$\frac{4}{15} \left(1000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000$$

Final equation:

$$2\sum_{1\leq i\leq j\leq 4}|X_i||X_j|-|F|-\tfrac{26}{9}\sum_{1\leq i\leq 4}|X_i|^2>0.0276n^2$$

F = wrongly colored edges.

HOW THE FIRST STEP WORKED

Quadratic programming

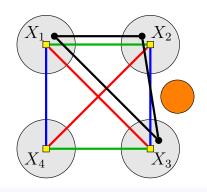
$$2\sum_{1 \le i < j \le 4} |X_i||X_j| - |F| - \frac{26}{9} \sum_{1 \le i \le 4} |X_i|^2 > 0.0276n^2$$

Use Lagrange multipliers:

$$0.244n < |X_i| < 0.256n$$

 $|Trash| < 0.006n$
 $|F| < 0.00008 \binom{n}{2}$

F = wrongly colored edges.



Main Result

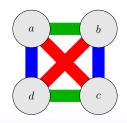
$$F(n) = \max \# \text{ of } \bigvee$$
 over all coloring of K_n

Theorem (Balogh, H., Lidický, Pfender, Volec, Young 2017)

For all $n > n_0$,

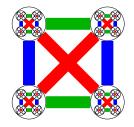
$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible.



THEOREM

of rainbow K_3s is maximized by

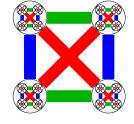


if on 4^k vertices.

13

THEOREM

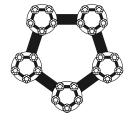
of rainbow K_3s is maximized by



if on 4^k vertices.

THEOREM

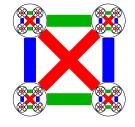
of induced C_5s is maximized by



if on 5^k vertices.

THEOREM

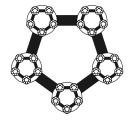
of rainbow K_3s is maximized by



if on 4^k vertices.

THEOREM

of induced C_5s is maximized by



if on 5^k vertices.

THEOREM

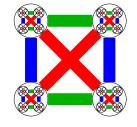
of induced oriented C_4s is maximized by



if on 4^k vertices.

THEOREM

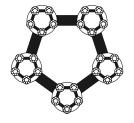
of rainbow K_3s is maximized by



if on 4^k vertices.

THEOREM

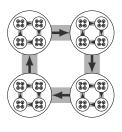
of induced C_5s is maximized by



if on 5^k vertices.

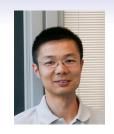
THEOREM

of induced oriented C_4s is maximized by



if on 4^k vertices.

(for all k)



Thank you for listening!

